题目:好多好多球
描述
一天,Jason买了许多的小球。有n个那么多。他写完了作业之后就对着这些球发呆,这时候邻居家的小朋友ion回来了,
Jason无聊之际想到了一个游戏。他把这n个小球从1到n进行标号。然后打乱顺序,排成一排。然后让ion进行一种操作:
每次可以任意选择一个球,将其放到队列的最前端或者队列的最末尾。问至少要进行多少次操作才能使得球的顺序变成正序1,2,3,4,5……n。
输入格式
包含多组测试数据,每组数据第一行输入一个n(1 <= n <= 100),表示有n个球。第二行有n个数字ai(1 <= ai <=
n),ai两两各不相同。
输出格式
每组测试数据输出占一行,表示最少的操作次数使得小球变得有序。
输入样例
4
3 2 1 4
2
2 1
输出样例
2
1
分析:题意是把n个乱序的数变为顺序,移动次数最少。同样是用到了最长上升子序列,这里的上升,是连续的、等差的,因为n个球的编号就是从1~n,所以我们找到每次递增1的最长子序列,剩下的数只要移到队头或者队尾就可以了。那么移动最少次数就等于n-LIS。
最长上升子序列
我们都知道,动态规划的一个特点就是当前解可以由上一个阶段的解推出, 由此,把我们要求的问题简化成一个更小的子问题。子问题具有相同的求解方式,只不过是规模小了而已。最长上升子序列就符合这一特性。我们要求n个数的最长上升子序列,可以求前n-1个数的最长上升子序列,再跟第n个数进行判断。求前n-1个数的最长上升子序列,可以通过求前n-2个数的最长上升子序列……直到求前1个数的最长上升子序列,此时LIS当然为1。
让我们举个例子:求 2 7 1 5 6 4 3 8 9 的最长上升子序列。我们定义d(i) (i∈[1,n])来表示前i个数以A[i]结尾的最长上升子序列长度。
前1个数 d(1)=1 子序列为2;
前2个数 7前面有2小于7 d(2)=d(1)+1=2 子序列为2 7
前3个数 在1前面没有比1更小的,1自身组成长度为1的子序列 d(3)=1 子序列为1
前4个数 5前面有2小于5 d(4)=d(1)+1=2 子序列为2 5
前5个数 6前面有2 5小于6 d(5)=d(4)+1=3 子序列为2 5 6
前6个数 4前面有2小于4 d(6)=d(1)+1=2 子序列为2 4
前7个数 3前面有2小于3 d(3)=d(1)+1=2 子序列为2 3
前8个数 8前面有2 5 6小于8 d(8)=d(5)+1=4 子序列为2 5 6 8
前9个数 9前面有2 5 6 8小于9 d(9)=d(8)+1=5 子序列为2 5 6 8 9
d(i)=max{d(1),d(2),……,d(i)} 我们可以看出这9个数的LIS为d(9)=5
总结一下,d(i)就是找以A[i]结尾的,在A[i]之前的最长上升子序列+1,当A[i]之前没有比A[i]更小的数时,d(i)=1。所有的d(i)里面最大的那个就是最长上升子序列。下面是代码实现的算法。
int LIS(int A[],int n)
{
int* d = new int[n];
int len = 1;
int i,j;
for(i=0;i=d[i])
d[i]=d[j]+1;
}
if(d[i]>len) len=d[i];
}
delete []d;
return len;
}
本题代码实现:
#include
using namespace std;
const int maxn = 101;
int LIS(int A[],int n)
{
int* d = new int[n];
int len = 1;
for(int i=0;id[i])
{
d[i]=d[j]+1;
}
}
if(d[i]>len) len = d[i];
}
return len;
}
int main()
{
int n;
int a[maxn];
scanf("%d",&n);
for(int i = 0;i