class Edge(object):
"""边"""
def __init__(self, a, b, weight):
self.a = a
self.b = b
self.weight = weight
def v(self):
return self.a
def w(self):
return self.b
def wt(self):
return self.weight
def other(self, x):
if x == self.a or x == self.b:
if x == self.a:
return self.b
else:
return self.a
def __lt__(self, other):
return self.weight < other.wt()
def __le__(self, other):
return self.weight <= other.wt()
def __gt__(self, other):
return self.weight > other.wt()
def __ge__(self, other):
return self.weight >= other.wt()
def __eq__(self, other):
return self.weight == other.wt()
class DenseGraph(object):
"""有权稠密图 - 邻接矩阵"""
def __init__(self, n, directed):
self.n = n
self.m = 0
self.directed = directed
self.g = [[None for _ in range(n)] for _ in range(n)]
def V(self):
return self.n
def E(self):
return self.m
def addEdge(self, v, w, weight):
if v >= 0 and v < n and w >= 0 and w < n:
if self.hasEdge(v, w):
self.m -= 1
self.g[v][w] = Edge(v, w, weight)
if not self.directed:
self.g[w][v] = Edge(w, v, weight)
self.m += 1
def hasEdge(self, v, w):
if v >= 0 and v < n and w >= 0 and w < n:
return self.g[v][w] != None
class adjIterator(object):
"""相邻节点迭代器"""
def __init__(self, graph, v):
self.G = graph
self.v = v
self.index = 0
def __iter__(self):
return self
def next(self):
while self.index < self.G.V():
if self.G.g[self.v][self.index]:
r = self.G.g[self.v][self.index]
self.index += 1
return r
self.index += 1
raise StopIteration()
class SparseGraph(object):
"""有权稀疏图- 邻接表"""
def __init__(self, n, directed):
self.n = n
self.m = 0
self.directed = directed
self.g = [[] for _ in range(n)]
def V(self):
return self.n
def E(self):
return self.m
def addEdge(self, v, w, weight):
if v >= 0 and v < n and w >= 0 and w < n:
self.g[v].append(Edge(v, w, weight))
if v != w and not self.directed:
self.g[w].append(Edge(w, v, weight))
self.m += 1
def hasEdge(self, v, w):
if v >= 0 and v < n and w >= 0 and w < n:
for i in self.g[v]:
if i.other(v) == w:
return True
return False
class adjIterator(object):
"""相邻节点迭代器"""
def __init__(self, graph, v):
self.G = graph
self.v = v
self.index = 0
def __iter__(self):
return self
def next(self):
if len(self.G.g[self.v]):
if self.index < len(self.G.g[self.v]):
r = self.G.g[self.v][self.index]
self.index += 1
return r
else:
raise StopIteration()
else:
raise StopIteration()
class ReadGraph(object):
"""读取文件中的图"""
def __init__(self, graph, filename):
with open(filename, 'r') as f:
line = f.readline()
line = line.strip('\n')
line = line.split()
v = int(line[0])
e = int(line[1])
if v == graph.V():
lines = f.readlines()
for i in lines:
a, b, w = self.stringstream(i)
if a >= 0 and a < v and b >=0 and b < v:
graph.addEdge(a, b, w)
def stringstream(self, text):
result = text.strip('\n')
result = result.split()
a, b, w = result
return int(a), int(b), float(w)
class UnionFind(object):
"""
路径压缩Path Compression,Quick Union,每个元素的组指向(等于)父节点的元素,根节点指向(等于)自身
"""
def __init__(self, n):
self.count = n
self.parent = range(n)
self.rank = [1 for _ in range(n)]
def find(self, p):
if p >=0 and p < self.count:
if p != self.parent[p]:
self.parent[p] = self.find(self.parent[p])
return self.parent[p]
def isConnected(self, p, q):
return self.find(p) == self.find(q)
def unionElements(self, p, q):
pRoot = self.find(p)
qRoot = self.find(q)
if pRoot == qRoot:
return None
if self.rank[pRoot] < self.rank[qRoot]:
self.parent[pRoot] = qRoot
elif self.rank[pRoot] > self.rank[qRoot]:
self.parent[qRoot] = pRoot
else:
self.parent[pRoot] = qRoot
self.rank[qRoot] += 1
class KruskalMST(object):
"""Kruskal最小生成树,先将边根据权值排序,然后依次取最小的边,只要不形成环"""
def __init__(self, graph):
self.G = graph
self.pq = MinHeap()
self.uf = UnionFind(self.G.V())
self.mst = []
self.mstWeight = 0
for i in range(self.G.V()):
adj = self.G.adjIterator(self.G, i)
for e in adj:
if e.v() < e.w():
self.pq.insert(e)
while not self.pq.isEmpty() and len(self.mst) < self.G.V()-1:
e = self.pq.extractMin()
if self.uf.isConnected(e.v(), e.w()):
continue
self.mst.append(e)
self.uf.unionElements(e.v(), e.w())
self.mstWeight = sum([i.wt() for i in self.mst])
def mstEdges(self):
return self.mst
def result(self):
return self.mstWeight