【算法——Python实现】有权图求最小生成树Kruskal算法

class Edge(object):
    """边"""
    def __init__(self, a, b, weight):
        self.a = a # 第一个顶点
        self.b = b # 第二个顶点
        self.weight = weight # 权值

    def v(self):
        return self.a

    def w(self):
        return self.b

    def wt(self):
        return self.weight

    def other(self, x):
        # 返回x顶点连接的另一个顶点
        if x == self.a or x == self.b:
            if x == self.a:
                return self.b
            else:
                return self.a

    def __lt__(self, other):
        # 小于号重载
        return self.weight < other.wt()

    def __le__(self, other):
        # 小于等于号重载
        return self.weight <= other.wt()

    def __gt__(self, other):
        # 大于号重载
        return self.weight > other.wt()

    def __ge__(self, other):
        # 大于等于号重载
        return self.weight >= other.wt()

    def __eq__(self, other):
        # ==号重载
        return self.weight == other.wt()


class DenseGraph(object):
    """有权稠密图 - 邻接矩阵"""
    def __init__(self, n, directed):
        self.n = n  # 图中的点数
        self.m = 0  # 图中的边数
        self.directed = directed  # bool值,表示是否为有向图
        self.g = [[None for _ in range(n)] for _ in range(n)]  # 矩阵初始化都为None的二维矩阵

    def V(self):
        # 返回图中点数
        return self.n

    def E(self):
        # 返回图中边数
        return self.m

    def addEdge(self, v, w, weight):
        # v和w中增加一条边,v和w都是[0,n-1]区间
        if v >= 0 and v < n and w >= 0 and w < n:
            if self.hasEdge(v, w):
                self.m -= 1
            self.g[v][w] = Edge(v, w, weight)
            if not self.directed:
                self.g[w][v] = Edge(w, v, weight)
            self.m += 1

    def hasEdge(self, v, w):
        # v和w之间是否有边,v和w都是[0,n-1]区间
        if v >= 0 and v < n and w >= 0 and w < n:
            return self.g[v][w] != None

    class adjIterator(object):
        """相邻节点迭代器"""
        def __init__(self, graph, v):
            self.G = graph  # 需要遍历的图
            self.v = v  # 遍历v节点相邻的边
            self.index = 0  # 遍历的索引

        def __iter__(self):
            return self

        def next(self):
            while self.index < self.G.V():
                # 当索引小于节点数量时遍历,否则为遍历完成,停止迭代
                if self.G.g[self.v][self.index]:
                    r = self.G.g[self.v][self.index]
                    self.index += 1
                    return r
                self.index += 1
            raise StopIteration()


class SparseGraph(object):
    """有权稀疏图- 邻接表"""
    def __init__(self, n, directed):
        self.n = n  # 图中的点数
        self.m = 0  # 图中的边数
        self.directed = directed  # bool值,表示是否为有向图
        self.g = [[] for _ in range(n)]  # 矩阵初始化都为空的二维矩阵

    def V(self):
        # 返回图中点数
        return self.n

    def E(self):
        # 返回图中边数
        return self.m

    def addEdge(self, v, w, weight):
        # v和w中增加一条边,v和w都是[0,n-1]区间
        if v >= 0 and v < n and w >= 0 and w < n:
            # 考虑到平行边会让时间复杂度变为最差为O(n)
            # if self.hasEdge(v, w):
            #   return None
            self.g[v].append(Edge(v, w, weight))
            if v != w and not self.directed:
                self.g[w].append(Edge(w, v, weight))
            self.m += 1

    def hasEdge(self, v, w):
        # v和w之间是否有边,v和w都是[0,n-1]区间
        # 时间复杂度最差为O(n)
        if v >= 0 and v < n and w >= 0 and w < n:
            for i in self.g[v]:
                if i.other(v) == w:
                    return True
            return False

    class adjIterator(object):
        """相邻节点迭代器"""
        def __init__(self, graph, v):
            self.G = graph  # 需要遍历的图
            self.v = v  # 遍历v节点相邻的边
            self.index = 0  # 遍历的索引

        def __iter__(self):
            return self

        def next(self):
            if len(self.G.g[self.v]):
                # v有相邻节点才遍历
                if self.index < len(self.G.g[self.v]):
                    r = self.G.g[self.v][self.index]
                    self.index += 1
                    return r
                else:
                    raise StopIteration()
            else:
                raise StopIteration()


class ReadGraph(object):
    """读取文件中的图"""
    def __init__(self, graph, filename):
        with open(filename, 'r') as f:
            line = f.readline()
            line = line.strip('\n')
            line = line.split()
            v = int(line[0])
            e = int(line[1])
            if v == graph.V():
                lines = f.readlines()
                for i in lines:
                    a, b, w = self.stringstream(i)
                    if a >= 0 and a < v and b >=0 and b < v:
                        graph.addEdge(a, b, w)

    def stringstream(self, text):
        result = text.strip('\n')
        result = result.split()
        a, b, w = result
        return int(a), int(b), float(w)


class UnionFind(object):
    """
    路径压缩Path Compression,Quick Union,每个元素的组指向(等于)父节点的元素,根节点指向(等于)自身
    """
    def __init__(self, n):
        # 传入列表的数量n,列表id初始化为每个元素代表一个组
        self.count = n
        self.parent = range(n)
        self.rank = [1 for _ in range(n)] # rank[i]表示以i为根的集合表示的树的层数

    def find(self, p):
        # 查找元素对应的组
        if p >=0 and p < self.count:
            # 路径压缩,自身指向由父节点变为根节点
            if p != self.parent[p]:
                self.parent[p] = self.find(self.parent[p])
            return self.parent[p]

    def isConnected(self, p, q):
        # p q两个元素是否连接,返回两个元素的组是否相等
        # 查询p q两个元素的根的组是否相等
        return self.find(p) == self.find(q)

    def unionElements(self, p, q):
        # p q的并
        pRoot = self.find(p)
        qRoot = self.find(q)
        if pRoot == qRoot:
            # pq根节点的组相等,不需要并,直接返回
            return None
        if self.rank[pRoot] < self.rank[qRoot]:
            # 不需要维护rank,因为rank[i]表示i为根的节点的树的层数。
            # pRoot指向qRoot后,qRoot的层数不变,pRoot的根节点变成qRoot,再find时则不会再找到pRoot
            self.parent[pRoot] = qRoot
        elif self.rank[pRoot] > self.rank[qRoot]:
            self.parent[qRoot] = pRoot
        else:
            self.parent[pRoot] = qRoot
            self.rank[qRoot] += 1


class KruskalMST(object):
    """Kruskal最小生成树,先将边根据权值排序,然后依次取最小的边,只要不形成环"""
    def __init__(self, graph):
        self.G = graph
        self.pq = MinHeap()
        self.uf = UnionFind(self.G.V())
        self.mst = []  # 记录被选取的边
        self.mstWeight = 0  # 记录最小生成树的总权值

        for i in range(self.G.V()):
            # 遍历每个节点
            adj = self.G.adjIterator(self.G, i)
            for e in adj:
                # 遍历与节点相连的所有边
                if e.v() < e.w():
                    # 因直接遍历会导致每条边被遍历两次,所以做判断,使每条边被插入到堆中一次
                    self.pq.insert(e)
        while not self.pq.isEmpty() and len(self.mst) < self.G.V()-1:
            e = self.pq.extractMin()
            # 判断此边是否会导致成环
            if self.uf.isConnected(e.v(), e.w()):
                continue
            self.mst.append(e)
            self.uf.unionElements(e.v(), e.w())
        self.mstWeight = sum([i.wt() for i in self.mst])

    def mstEdges(self):
        # 查询最小生成树的边
        return self.mst

    def result(self):
        # 返回最小生成树的权值
        return self.mstWeight

你可能感兴趣的:(算法——Python实现)