HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
HashMap是非线程安全的,只是用于单线程环境下,多线程环境下可以采用concurrent并发包下的concurrentHashMap。
HashMap 实现了Serializable接口,因此它支持序列化,实现了Cloneable接口,能被克隆。
图中,紫色部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
// Entry是单向链表。
// 它是 “HashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
static class Entry implements Map.Entry {
final K key;
V value;
// 指向下一个节点
Entry next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
// 当向HashMap中添加元素时,绘调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap m) {
}
// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap m) {
}
}
它的结构元素除了key、value、hash外,还有next,next指向下一个节点。另外,这里覆写了equals和hashCode方法来保证键值对的独一无二。
// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// HashMap的最大容量只能是MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//加载因此不能小于0
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 找出“大于initialCapacity”的最小的2的幂
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
// 设置“加载因子”
this.loadFactor = loadFactor;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(capacity * loadFactor);
// 创建Entry数组,用来保存数据
table = new Entry[capacity];
init();
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 默认构造函数。
public HashMap() {
// 设置“加载因子”为默认加载因子0.75
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
// 创建Entry数组,用来保存数据
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
// 包含“子Map”的构造函数
public HashMap(Map extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 将m中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
构造方法中提到了两个很重要的参数:初始容量和加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中槽的数量(即哈希数组的长度),初始容量是创建哈希表时的容量(从构造函数中可以看出,如果不指明,则默认为16),加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 resize 操作(即扩容)。
下面说下加载因子,如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。
另外,无论我们指定的容量为多少,构造方法都会将实际容量设为不小于指定容量的2的次方的一个数,且最大值不能超过2的30次方
get:
// 获取key对应的value
public V get(Object key) {
if (key == null)
return getForNullKey();
// 获取key的hash值
int hash = hash(key.hashCode());
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//判断key是否相同
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
//没找到则返回null
return null;
}
// 获取“key为null”的元素的值
// HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
private V getForNullKey() {
for (Entry e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
首先,如果key为null,则直接从哈希表的第一个位置table[0]对应的链表上查找。记住,key为null的键值对永远都放在以table[0]为头结点的链表中,当然不一定是存放在头结点table[0]中。
如果key不为null,则先求的key的hash值,根据hash值找到在table中的索引,在该索引对应的单链表中查找是否有键值对的key与目标key相等,有就返回对应的value,没有则返回null。
put:
// 将“key-value”添加到HashMap中
public V put(K key, V value) {
// 若“key为null”,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若“该key”对应的键值对不存在,则将“key-value”添加到table中
modCount++;
//将key-value添加到table[i]处
addEntry(hash, key, value, i);
return null;
}
如果key为null,则将其添加到table[0]对应的链表中,putForNullKey的源码如下:
// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
private V putForNullKey(V value) {
for (Entry e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 如果没有存在key为null的键值对,则直接题阿见到table[0]处!
modCount++;
addEntry(0, null, value, 0);
return null;
}
如果key不为null,则同样先求出key的hash值,根据hash值得出在table中的索引,而后遍历对应的单链表,如果单链表中存在与目标key相等的键值对,则将新的value覆盖旧的value,比将旧的value返回,如果找不到与目标key相等的键值对,或者该单链表为空,则将该键值对插入到改单链表的头结点位置(每次新插入的节点都是放在头结点的位置),该操作是有addEntry方法实现的,它的源码如下:
// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry(hash, key, value, e);
// 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
if (size++ >= threshold)
resize(2 * table.length);
}
注意这里倒数第三行的构造方法,将key-value键值对赋给table[bucketIndex],并将其next指向元素e,这便将key-value放到了头结点中,并将之前的头结点接在了它的后面。该方法也说明,每次put键值对的时候,总是将新的该键值对放在table[bucketIndex]处(即头结点处)。
两外注意最后两行代码,每次加入键值对时,都要判断当前已用的槽的数目是否大于等于阀值(容量*加载因子),如果大于等于,则进行扩容,将容量扩为原来容量的2倍。
resize方法
// 重新调整HashMap的大小,newCapacity是调整后的单位
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
// 然后,将“新HashMap”赋值给“旧HashMap”。
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
很明显,是新建了一个HashMap的底层数组,而后调用transfer方法,将就HashMap的全部元素添加到新的HashMap中(要重新计算元素在新的数组中的索引位置)。transfer方法的源码如下:
// 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry e = src[j];
if (e != null) {
src[j] = null;
do {
Entry next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
很明显,扩容是一个相当耗时的操作,因为它需要重新计算这些元素在新的数组中的位置并进行复制处理。因此,我们在用HashMap的时,最好能提前预估下HashMap中元素的个数,这样有助于提高HashMap的性能。
注意containsKey方法和containsValue方法。前者直接可以通过key的哈希值将搜索范围定位到指定索引对应的链表,而后者要对哈希数组的每个链表进行搜索。
我们重点来分析下求hash值和索引值的方法,这两个方法便是HashMap设计的最为核心的部分,二者结合能保证哈希表中的元素尽可能均匀地散列。
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
它只是一个数学公式,IDK这样设计对hash值的计算,自然有它的好处,至于为什么这样设计,我们这里不去追究,只要明白一点,用的位的操作使hash值的计算效率很高。
由hash值找到对应索引的方法如下:
static int indexFor(int h, int length) {
return h & (length-1);
}
这个我们要重点说下,我们一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。
接下来,我们分析下为什么哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。
文章摘自 http://blog.csdn.net/ns_code/article/details/36034955