深度学习教程 TensorFlow and Deep Learning Tutorials

深度学习教程 TensorFlow and Deep Learning Tutorials_第1张图片

Google's Deep Learning Tutorials

  • TensorFlow Official Deep Learning Tutorial [中文].
  • MLP with Dropout TensorFlow [中文] TensorLayer [中文]
  • Autoencoder TensorLayer [中文]
  • Convolutional Neural Network TensorFlow [中文] TensorLayer [中文]
  • Recurrent Neural Network TensorFlow [中文] TensorLayer [中文]
  • Deep Reinforcement Learning TensorLayer [中文]
  • Sequence to Sequence TensorFlow TensorLayer[中文]
  • Word Embedding TensorFlow [中文] TensorLayer [中文]

Deep Learning Reading List

  • MIT Deep Learning Book
  • Karpathy Blog
  • Stanford UFLDL Tutorials
  • Colah's Blog - Word Embedding [中文]
  • Colah's Blog - Understand LSTN [门函数]

Tutorial index

0 - Prerequisite

  • Introduction to Machine Learning (notebook)
  • Introduction to MNIST Dataset (notebook)

1 - Introduction

  • Hello World (notebook) (code)
  • Basic Operations (notebook) (code)

2 - Basic Models

  • Nearest Neighbor (notebook) (code)
  • Linear Regression (notebook) (code)
  • Logistic Regression (notebook) (code)

3 - Neural Networks

  • Multilayer Perceptron (notebook) (code)
  • Convolutional Neural Network (notebook) (code)
  • Recurrent Neural Network (LSTM) (notebook) (code)
  • Bidirectional Recurrent Neural Network (LSTM) (notebook) (code)
  • Dynamic Recurrent Neural Network (LSTM) (code)
  • AutoEncoder (notebook) (code)

4 - Utilities

  • Save and Restore a model (notebook) (code)
  • Tensorboard - Graph and loss visualization (notebook) (code)
  • Tensorboard - Advanced visualization (code)

5 - Multi GPU

  • Basic Operations on multi-GPU (notebook) (code)

Dataset

Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

Official Website: http://yann.lecun.com/exdb/mnist/

Selected Repositories

  • jtoy/awesome-tensorflow
  • nlintz/TensorFlow-Tutoirals
  • adatao/tensorspark
  • ry/tensorflow-resnet

Tricks

  • Tricks to use TensorLayer

Examples

Basics

  • Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist_simple.py here.

Computer Vision

  • Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist.py here.
  • Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist.py here.
  • Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see tutorial_mnist.py here.
  • Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see tutorial_cifar10.py here.
  • VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see tutorial_vgg16.py here.
  • VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see tutorial_vgg19.py here.

Natural Language Processing

  • Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see tutorial_ptb_lstm.py here.
  • Word Embedding - Word2vec. Train a word embedding matrix, see tutorial_word2vec_basic.py here.
  • Restore Embedding matrix. Restore a pre-train embedding matrix, see tutorial_generate_text.py here.
  • Text Generation. Generates new text scripts, using LSTM network, see tutorial_generate_text.py here.
  • Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT English-to-French translation data, see tutorial_translate.py here.

Reinforcement Learning

  • Deep Reinforcement Learning - Pong Game. Teach a machine to play Pong games, see tutorial_atari_pong.py here.

Useful Links

  • Tricks to use TensorLayer

from: https://github.com/wagamamaz/tensorflow-tutorial/blob/master/README.md?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io

你可能感兴趣的:(Deep,Learning)