三个例程学会使用TensorBoard

TensorBoard使用

为了更方便TensorFlow程序的理解、调试与优化,Google发布了一套叫做TensorBoard的可视化工具,可以用TensorBoard来展现TensorFlow的图像,绘制图像生成的定量指标图以及附加数据。

TensorBoard设置完成之后的样子应该如下图:
三个例程学会使用TensorBoard_第1张图片

其基本原理见TensorBoard中文手册,内有详细的介绍。

本文参考了放羊的水瓶的博文。

下面通过三个例程,来讲解其使用:

例程1 矩阵相乘 tfboard1.py

import tensorflow as tf
with tf.name_scope('graph') as scope:
    matrix1 = tf.constant([[3., 3.]], name = 'matrix')   # 一行两列
    matrix2 = tf.constant([[2.], [2.]], name = 'matrix2') # 两行一列
    product = tf.matmul(matrix1, matrix2, name = 'product')


sess = tf.Session()

writer = tf.summary.FileWriter("logs1/", sess.graph)

init = tf.global_variables_initializer()

sess.run(init)

tf.name_scope函数是作用域名,上述代码斯即在graph作用域op下,又有三个op(分别是matrix1,matrix2,product),用tf函数内部的name参数命名,这样会在tensorboard中显示。

运行上述代码后,在项目所在目录会生成”logs1”目录(可以自定义名字),然后在命令行运行:

tensorboard --logdir logs1

即可在本机6006端口调用TensorBoard。可以通过浏览器打开使用。

例程2 线性拟合(一) tfboard2.py

例程1中没有任何训练过程,比较简单,下面通过这个例子来画出它的张量流动图。


import tensorflow as tf
import numpy as np

# 准备原始数据
with tf.name_scope('data'):
    x_data = np.random.rand(100).astype(np.float32)
    y_data = 0.3*x_data + 0.1

# 参数设置
with tf.name_scope('parameters'):
    weight = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
    bias = tf.Variable(tf.zeros([1]))

# 得到 y_prediction
with tf.name_scope('y_prediction'):
    y_prediction = weight*x_data + bias

# 计算损失率compute the loss
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.square(y_data - y_prediction))

#
optimizer = tf.train.GradientDescentOptimizer(0.5)

with tf.name_scope('train'):
    train = optimizer.minimize(loss)

with tf.name_scope('init'):
    init = tf.global_variables_initializer()

sess = tf.Session()
writer = tf.summary.FileWriter("logs2/",sess.graph)
sess.run(init)

for step in range(101):
    sess.run(train)
    if step%10 == 0:
        print(step, 'weight', sess.run(weight), 'bias:', sess.run(bias))

例程3 线性拟合(二) tfboard3.py

对例程二代码进行修改,尝试tensorboard的其他功能,例如scalars,distributions,histograms,这些功能对于分析学习算法的性能有很大帮助。

import tensorflow as tf
import numpy as np

with tf.name_scope('data'):
    x_data = np.random.rand(100).astype(np.float32)
    y_data = 0.3*x_data + 0.1

with tf.name_scope('paremeters'):
    with tf.name_scope('weights'):
        weight = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
        tf.summary.histogram('weight', weight)
    with tf.name_scope('biases'):
        bias = tf.Variable(tf.zeros([1]))
        tf.summary.histogram('bias', bias)

with tf.name_scope('y_prediction'):
    y_prediction = weight*x_data + bias

with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.square(y_data - y_prediction))
    tf.summary.scalar('loss', loss)

optimizer = tf.train.GradientDescentOptimizer(0.5)

with tf.name_scope('train'):
    train = optimizer.minimize(loss)

with tf.name_scope('init'):
    init = tf.global_variables_initializer()

sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs3/", sess.graph)
sess.run(init)

for step in range(101):
    sess.run(train)
    rs = sess.run(merged)
    writer.add_summary(rs, step)

本文首发于个人网页Yao Blog,知乎专栏谈技术 不能潦草,CSDN博客:手握灵珠常奋笔。

你可能感兴趣的:(Python,机器学习,tensorflow)