拓展欧几里得与直线上的点

  • 拓展欧几里得
  • 直线上的点
    • 求所有解

拓展欧几里得

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by
举例:

#include
using namespace std; 
//ax+by=gcd(a,b)
void exgcd(int a,int b,int &d,int &x,int &y){
    if(b==0){
        d=a;
        x=1;
        y=0;
    }
    else{
        exgcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}
int main(){
    int d,x,y;
    exgcd(6,15,d,x,y);
    cout<<"gcd: "<cout<<"x: "<"   y: "<return 0;
}

直线上的点

例如求ax+by=c的整点(x,y)有哪些
因为存在ax0+by0=gcd(a,b),所以若c是gcd(a,b)的倍数时,ax+by=c的一组解是(x0*c/g,y0*c/g)
当c不是g的倍数时无整数解

求所有解

设a, b, c为任意整数。若方程ax+by=c的一组整数解为(x0,y0),则它的任
意整数解都可以写成(x0+kb’, y0-ka’),其中a’=a/gcd(a,b),b’=b/gcd(a,b),k取任意整数。
有了这个结论,移项得ax+by=-c,然后求出一组解即可。

你可能感兴趣的:(常用查询库)