机器学习一个小目标——Task4

任务【模型评估】

记录五个模型关于precision,rescore,f1,auc,roc的评分表格,画出roc曲线图

实验代码

#!/usr/bin/env python 3.6
#-*- coding:utf-8 -*-
# @File    : Model_evaluation.py
# @Date    : 2018-11-20
# @Author  : 黑桃
# @Software: PyCharm 

import pickle
from matplotlib import pyplot as plt
from sklearn.externals import joblib
from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score, roc_curve

path = "E:/MyPython/Machine_learning_GoGoGo/"
"""=====================================================================================================================
1 读取特征
"""
print("0 读取特征")
f = open(path + 'feature/feature_V1.pkl', 'rb')
train, test, y_train,y_test= pickle.load(f)
f.close()

"""=====================================================================================================================
2 读取模型
"""
print("1 读取模型")
SVM_linear = joblib.load( path + "model/SVM_linear.pkl")
SVM_poly = joblib.load( path + "model/SVM_poly.pkl")
SVM_rbf = joblib.load( path + "model/SVM_rbf.pkl")
SVM_sigmoid = joblib.load( path + "model/SVM_sigmoid.pkl")
lg_120 = joblib.load( path + "model/lg_120.pkl")
DT = joblib.load( path + "model/DT.pkl")
xgb_sklearn = joblib.load( path + "model/xgb_sklearn.pkl")
lgb_sklearn = joblib.load( path + "model/lgb_sklearn.pkl")
xgb = joblib.load( path + "model/xgb.pkl")
lgb = joblib.load( path + "model/lgb.pkl")




"""=====================================================================================================================
3 模型评估
"""

def model_evalua(clf, X_train, X_test, y_train, y_test,clf_name):
    y_train_pred = clf.predict(X_train)
    y_test_pred = clf.predict(X_test)
    y_train_pred_proba = clf.predict_proba(X_train)[:, 1]
    y_test_pred_proba = clf.predict_proba(X_test)[:, 1]
    """【AUC Score】"""
    print('AUC Score')
    print("Train_AUC Score :{:.4f}".format(roc_auc_score(y_train, y_train_pred)))
    print("Test_AUC Score :{:.4f}".format(roc_auc_score(y_test, y_test_pred)))

    """【准确性】"""
    print('准确性:')
    print('Train_准确性:{:.4f}'.format(accuracy_score(y_train, y_train_pred)))
    print('Test_准确性:{:.4f}'.format(accuracy_score(y_test, y_test_pred)))

    """【召回率】"""
    print('召回率:')
    print('Train_召回率:{:.4f}'.format(recall_score(y_train, y_train_pred)))
    print('Test_召回率:{:.4f}'.format(recall_score(y_test, y_test_pred)))

    """【f1_score】"""
    print('f1_score:')
    print('Train_f1_score:{:.4f}'.format(f1_score(y_train, y_train_pred)))
    print('Test_f1_score:{:.4f}'.format(f1_score(y_test, y_test_pred)))

    #描绘 ROC 曲线
    fpr_tr, tpr_tr, _ = roc_curve(y_train, y_train_pred_proba)
    fpr_te, tpr_te, _ = roc_curve(y_test, y_test_pred_proba)
    # KS
    print('KS:')
    print('Train:{:.4f}'.format(max(abs((fpr_tr - tpr_tr)))))
    print('Test:{:.4f}'.format(max(abs((fpr_te - tpr_te)))))
    plt.plot(fpr_tr, tpr_tr, 'r-',
             label = "Train:AUC: {:.3f} KS:{:.3f}".format(roc_auc_score(y_train, y_train_pred_proba),
                                                max(abs((fpr_tr - tpr_tr)))))
    plt.plot(fpr_te, tpr_te, 'g-',
             label="Test:AUC: {:.3f} KS:{:.3f}".format(roc_auc_score(y_test, y_test_pred_proba),
                                                       max(abs((fpr_tr - tpr_tr)))))
    plt.plot([0, 1], [0, 1], 'd--')
    plt.legend(loc='best')
    plt.title(clf_name + "ROC curse")
    plt.savefig(path +'picture/'+clf_name+'.jpg')
    plt.show()
print('-------------------SVM_linear-------------------')
model_evalua(SVM_linear, train, test, y_train, y_test,'SVM_linear')

print('-------------------SVM_poly-------------------:')
model_evalua(SVM_poly, train, test, y_train, y_test,'SVM_poly')

print('-------------------SVM_rbf-------------------:')
model_evalua(SVM_rbf, train, test, y_train, y_test,'SVM_rbf')

print('-------------------SVM_sigmoid-------------------:')
model_evalua(SVM_sigmoid, train, test, y_train, y_test,'SVM_sigmoid')

print('-------------------lg_120-------------------')
model_evalua(lg_120, train, test, y_train, y_test,'lg_120')

print('-------------------DT-------------------')
model_evalua(DT, train, test, y_train, y_test,'DT')

print('-------------------xgb_sklearn-------------------')
model_evalua(xgb_sklearn, train, test, y_train, y_test,'xgb_sklearn')

# print('-------------------xgb-------------------')
# model_evalua(xgb, train, test, y_train, y_test)

print('-------------------lgb_sklearn-------------------')
model_evalua(lgb_sklearn, train, test, y_train, y_test,'lgb_sklearn')
# print('-------------------lgb-------------------')
# model_evalua(lgb, train, test, y_train, y_test)




实验结果

precision recall f1_score KS ROC_AUC ROC曲线
SVM_linear Train_准确性:0.7878Test_准确性:0.7442 Train_召回率:0.1683Test_召回率:0.3377 Train_f1_score:0.2781 Test_f1_score:0.4160 Train:0.4519 Test:0.2590 Train_AUC Score :0.5774 Test_AUC Score :0.6160 机器学习一个小目标——Task4_第1张图片
SVM_poly Train_准确性:0.7815 Test_准确性:0.7267 Train_召回率:0.1027 Test_召回率:0.0597 Train_f1_score:0.1859 Test_f1_score:0.1055 Train:0.7099 Test:0.3082 Train_AUC Score :0.5510 Test_AUC Score :0.5164 机器学习一个小目标——Task4_第2张图片
SVM_rbf Train_准确性:0.7971 Test_准确性:0.7589 Train_召回率:0.1894 Test_召回率:0.1455 Train_f1_score:0.3119 Test_f1_score:0.2456 Train:0.6474 Test:0.3723 Train_AUC Score :0.5907 Test_AUC Score :0.5655 机器学习一个小目标——Task4_第3张图片
SVM_sigmoid Train_准确性:0.7265 Test_准确性:0.7092 Train_召回率:0.2809 Test_召回率:0.1584 Train_f1_score:0.3328 Test_f1_score:0.2272 Train:0.2216 Test:0.1235 Train_AUC Score :0.5752 Test_AUC Score :0.5356 机器学习一个小目标——Task4_第4张图片
lg_120 Train_准确性:0.4355 Test_准确性:0.4590 Train_召回率:0.6671 Test_召回率:0.7117 Train_f1_score:0.3647 Test_f1_score:0.4152 Train:0.0695 Test:0.0907 Train_AUC Score :0.5142 Test_AUC Score :0.5387 机器学习一个小目标——Task4_第5张图片
DT Train_准确性:0.7920 Test_准确性:0.7505 Train_召回率:0.4245 Test_召回率:0.3169 Train_f1_score:0.4978 Test_f1_score:0.4067 Train:0.4126 Test:0.3524 Train_AUC Score :0.6672 Test_AUC Score :0.6138 机器学习一个小目标——Task4_第6张图片
xgb_sklearn Train_准确性:0.8452 Test_准确性:0.7765 Train_召回率:0.4691 Test_召回率:0.3065 Train_f1_score:0.5954 Test_f1_score:0.4252 Train:0.6167 Test:0.3763 Train_AUC Score :0.7175 Test_AUC Score :0.6283 机器学习一个小目标——Task4_第7张图片
lgb_sklearn Train_准确性:1.0000 Test_准确性:0.7680 Train_召回率:1.0000 Test_召回率:0.3117 Train_f1_score:1.0000 Test_f1_score:0.4203 Train:1.0000 Test:0.3761 Train_AUC Score :1.0000 Test_AUC Score :0.6242 机器学习一个小目标——Task4_第8张图片

参考文献

ML实操 - 贷款用户逾期情况分析
ML - 贷款用户逾期情况分析
python matplotlib 画图保存图片简单例子
sklearn.metrics中的评估方法介绍(accuracy_score, recall_score, roc_curve, roc_auc_score, confusion_matrix)

你可能感兴趣的:(Python,机器学习一小步)