cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) root_dir=$cur_dir/../.. #root_dir=$LVMDATA/lvmdata/caffe-ssd cd $root_dir redo=1 #data_root_dir="$HOME/data/VOCdevkit" data_root_dir="$HOME/data/VOCdevkit" #data_root_dir="$LVMDATA/lvmdata/caffe-ssd/data/VOCdevkit" dataset_name="dronedata" mapfile="$root_dir/data/$dataset_name/labelmap_voc.prototxt" anno_type="detection" db="lmdb" min_dim=0 max_dim=0 width=0 height=0 extra_cmd="--encode-type=jpg --encoded" if [ $redo ] then extra_cmd="$extra_cmd --redo" fi for subset in test trainval do python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name done
#!/bin/bash root_dir=$HOME/data/VOCdevkit/ #root_dir=$LVMDATA/lvmdata/caffe-ssd/data/VOCdevkit/ sub_dir=ImageSets/Main bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" for dataset in trainval test do dst_file=$bash_dir/$dataset.txt if [ -f $dst_file ] then rm -f $dst_file fi for name in dronedata do if [[ $dataset == "test" && $name == "VOC2012" ]] then continue fi echo "Create list for $name $dataset..." dataset_file=$root_dir/$name/$sub_dir/$dataset.txt img_file=$bash_dir/$dataset"_img.txt" cp $dataset_file $img_file sed -i "s/^/$name\/JPEGImages\//g" $img_file sed -i "s/$/.jpg/g" $img_file label_file=$bash_dir/$dataset"_label.txt" cp $dataset_file $label_file sed -i "s/^/$name\/Annotations\//g" $label_file sed -i "s/$/.xml/g" $label_file paste -d' ' $img_file $label_file >> $dst_file rm -f $label_file rm -f $img_file done # Generate image name and size infomation. if [ $dataset == "test" ] then $bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt" fi # Shuffle trainval file. if [ $dataset == "trainval" ] then rand_file=$dst_file.random cat $dst_file | perl -MList::Util=shuffle -e 'print shuffle(
);' > $rand_file mv $rand_file $dst_file fi done
#!/usr/bin/python # -*- coding: UTF-8 -*- from __future__ import print_function caffe_root = '/home/jhy/caffe-ssd/' import os os.chdir(caffe_root) import sys sys.path.insert(0, '/home/jhy/caffe-ssd/python') import caffe from caffe.model_libs import * from google.protobuf import text_format import math import os import shutil import stat import subprocess import sys def AddExtraLayers(net, use_batchnorm=True, lr_mult=1): use_relu = True # Add additional convolutional layers. # 19 x 19 from_layer = net.keys()[-1] # TODO(weiliu89): Construct the name using the last layer to avoid duplication. # 10 x 10 out_layer = "conv6_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv6_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2, lr_mult=lr_mult) # 5 x 5 from_layer = out_layer out_layer = "conv7_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv7_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2, lr_mult=lr_mult) # 3 x 3 from_layer = out_layer out_layer = "conv8_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv8_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1, lr_mult=lr_mult) # 1 x 1 from_layer = out_layer out_layer = "conv9_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv9_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1, lr_mult=lr_mult) return net ### Modify the following parameters accordingly ### # The directory which contains the caffe code. # We assume you are running the script at the CAFFE_ROOT. caffe_root = os.getcwd() # Set true if you want to start training right after generating all files. run_soon = True # Set true if you want to load from most recently saved snapshot. # Otherwise, we will load from the pretrain_model defined below. resume_training = True # If true, Remove old model files. remove_old_models = False # The database file for training data. Created by data/VOC0712/create_data.sh train_data = "examples/dronedata/dronedata_trainval_lmdb" # The database file for testing data. Created by data/VOC0712/create_data.sh test_data = "examples/dronedata/dronedata_test_lmdb" # Specify the batch sampler. resize_width = 512 resize_height = 512 resize = "{}x{}".format(resize_width, resize_height) #resie = 512×512 batch_sampler = [ { 'sampler': { }, 'max_trials': 1, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.1, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.3, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.5, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.7, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.9, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'max_jaccard_overlap': 1.0, }, 'max_trials': 50, 'max_sample': 1, }, ] train_transform_param = { 'mirror': True, 'mean_value': [104, 117, 123], 'force_color':True, 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [ P.Resize.LINEAR, P.Resize.AREA, P.Resize.NEAREST, P.Resize.CUBIC, P.Resize.LANCZOS4, ], }, 'distort_param': { 'brightness_prob': 0.5, 'brightness_delta': 32, 'contrast_prob': 0.5, 'contrast_lower': 0.5, 'contrast_upper': 1.5, 'hue_prob': 0.5, 'hue_delta': 18, 'saturation_prob': 0.5, 'saturation_lower': 0.5, 'saturation_upper': 1.5, 'random_order_prob': 0.0, }, 'expand_param': { 'prob': 0.5, 'max_expand_ratio': 4.0, }, 'emit_constraint': { 'emit_type': caffe_pb2.EmitConstraint.CENTER, } } test_transform_param = { 'mean_value': [104, 117, 123], 'force_color':True, 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [P.Resize.LINEAR], }, } # If true, use batch norm for all newly added layers. # Currently only the non batch norm version has been tested. use_batchnorm = False lr_mult = 1 # Use different initial learning rate. if use_batchnorm: base_lr = 0.0004 else: # A learning rate for batch_size = 1, num_gpus = 1. base_lr = 0.000008 # Modify the job name if you want. job_name = "SSD_{}".format(resize)#SSD_512x512 # The name of the model. Modify it if you want. model_name = "VGG_jhyDrone_{}".format(job_name) # Directory which stores the model .prototxt file. save_dir = "/home/jhy/models/VGGNet/jhyDrone/{}".format(job_name) # Directory which stores the snapshot of models.� snapshot_dir = "/home/jhy/models/VGGNet/jhyDrone/{}".format(job_name) # Directory which stores the job script and log file. job_dir = "/home/jhy/jobs/VGGNet/jhyDrone/{}".format(job_name) # Directory which stores the detection results. output_result_dir = "{}/data/VOCdevkit/results/jhyDrone/{}/Main".format(os.environ['HOME'], job_name) #output_result_dir = "{}/data/VOCdevkit/results/jhyDrone/{}/Main".format(os.environ['LVMDATA'], job_name) # model definition files.模型定义文件 train_net_file = "{}/train.prototxt".format(save_dir) test_net_file = "{}/test.prototxt".format(save_dir) deploy_net_file = "{}/deploy.prototxt".format(save_dir) solver_file = "{}/solver.prototxt".format(save_dir) # snapshot prefix.快照前缀 snapshot_prefix = "{}/{}".format(snapshot_dir, model_name) # job script path. job_file = "{}/{}.sh".format(job_dir, model_name) # Stores the test image names and sizes. Created by data/VOC0712/create_list.sh #存储测试图片的名称和大小。由数据/ VOC0712 / create_list.sh name_size_file = "data/dronedata/test_name_size.txt" # The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet. pretrain_model = "/home/jhy/models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel" # Stores LabelMapItem. label_map_file = "data/dronedata/labelmap_voc.prototxt" # MultiBoxLoss parameters. num_classes = 2 share_location = True background_label_id=0 train_on_diff_gt = True normalization_mode = P.Loss.VALID code_type = P.PriorBox.CENTER_SIZE ignore_cross_boundary_bbox = False mining_type = P.MultiBoxLoss.MAX_NEGATIVE neg_pos_ratio = 2 loc_weight = (neg_pos_ratio + 1.) / 4. multibox_loss_param = { 'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1, 'conf_loss_type': P.MultiBoxLoss.SOFTMAX, 'loc_weight': loc_weight, 'num_classes': num_classes, 'share_location': share_location, 'match_type': P.MultiBoxLoss.PER_PREDICTION, 'overlap_threshold': 0.5, 'use_prior_for_matching': True, 'background_label_id': background_label_id, 'use_difficult_gt': train_on_diff_gt, 'mining_type': mining_type, 'neg_pos_ratio': neg_pos_ratio, 'neg_overlap': 0.5, 'code_type': code_type, 'ignore_cross_boundary_bbox': ignore_cross_boundary_bbox, } loss_param = { 'normalization': normalization_mode, } # parameters for generating priors. # minimum dimension of input image min_dim = 512 # conv4_3 ==> 38 x 38 # fc7 ==> 19 x 19 # conv6_2 ==> 10 x 10 # conv7_2 ==> 5 x 5 # conv8_2 ==> 3 x 3 # conv9_2 ==> 1 x 1 mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2'] # in percent % min_ratio = 20 max_ratio = 90 step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2))) min_sizes = [] max_sizes = [] for ratio in range(min_ratio, max_ratio + 1, step): min_sizes.append(min_dim * ratio / 100.) max_sizes.append(min_dim * (ratio + step) / 100.) min_sizes = [min_dim * 10 / 100.] + min_sizes max_sizes = [min_dim * 20 / 100.] + max_sizes steps = [8, 16, 32, 64, 100, 300] aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]] # L2 normalize conv4_3. normalizations = [20, -1, -1, -1, -1, -1] # variance used to encode/decode prior bboxes. if code_type == P.PriorBox.CENTER_SIZE: prior_variance = [0.1, 0.1, 0.2, 0.2] else: prior_variance = [0.1] flip = True clip = False # Solver parameters. # Defining which GPUs to use. gpus = "0,1,2" #gpus = "0" gpulist = gpus.split(",") num_gpus = len(gpulist) # Divide the mini-batch to different GPUs. batch_size = 32 accum_batch_size = 32 iter_size = accum_batch_size / batch_size solver_mode = P.Solver.CPU device_id = 0 batch_size_per_device = batch_size if num_gpus > 0: batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus)) iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus))) solver_mode = P.Solver.GPU device_id = int(gpulist[0]) if normalization_mode == P.Loss.NONE: base_lr /= batch_size_per_device elif normalization_mode == P.Loss.VALID: base_lr *= 25. / loc_weight elif normalization_mode == P.Loss.FULL: # Roughly there are 2000 prior bboxes per image. # TODO(weiliu89): Estimate the exact # of priors. base_lr *= 2000. # Evaluate on whole test set. #num_test_image = 86 num_test_image = 10 test_batch_size = 1 # Ideally test_batch_size should be divisible by num_test_image, # otherwise mAP will be slightly off the true value. test_iter = int(math.ceil(float(num_test_image) / test_batch_size)) solver_param = { # Train parameters 'base_lr': base_lr, 'weight_decay': 0.0005, 'lr_policy': "multistep", 'stepvalue': [8000, 10000, 12000], 'gamma': 0.1, 'momentum': 0.9, 'iter_size': iter_size, 'max_iter': 120000, 'snapshot': 10000, 'display': 10, 'average_loss': 10, 'type': "SGD", 'solver_mode': solver_mode, 'device_id': device_id, 'debug_info': False, 'snapshot_after_train': True, # Test parameters 'test_iter': [test_iter], 'test_interval': 500, 'eval_type': "detection", 'ap_version': "11point", 'test_initialization': False, 'show_per_class_result': True, } # parameters for generating detection output. det_out_param = { 'num_classes': num_classes, 'share_location': share_location, 'background_label_id': background_label_id, 'nms_param': {'nms_threshold': 0.45, 'top_k': 400}, 'save_output_param': { 'output_directory': output_result_dir, 'output_name_prefix': "comp4_det_test_", 'output_format': "VOC", 'label_map_file': label_map_file, 'name_size_file': name_size_file, 'num_test_image': num_test_image, }, 'keep_top_k': 200, 'confidence_threshold': 0.01, 'code_type': code_type, } # parameters for evaluating detection results. det_eval_param = { 'num_classes': num_classes, 'background_label_id': background_label_id, 'overlap_threshold': 0.5, 'evaluate_difficult_gt': False, 'name_size_file': name_size_file, } ### Hopefully you don't need to change the following ### # Check file. check_if_exist(train_data) check_if_exist(test_data) check_if_exist(label_map_file) check_if_exist(pretrain_model) make_if_not_exist(save_dir) make_if_not_exist(job_dir) make_if_not_exist(snapshot_dir) # Create train net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device, train=True, output_label=True, label_map_file=label_map_file, transform_param=train_transform_param, batch_sampler=batch_sampler) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False) AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult) # Create the MultiBoxLossLayer. name = "mbox_loss" mbox_layers.append(net.label) net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param, loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), propagate_down=[True, True, False, False]) with open(train_net_file, 'w') as f: print('name: "{}_train"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(train_net_file, job_dir) # Create test net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size, train=False, output_label=True, label_map_file=label_map_file, transform_param=test_transform_param) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False) AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult) conf_name = "mbox_conf" if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX: reshape_name = "{}_reshape".format(conf_name) net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes])) softmax_name = "{}_softmax".format(conf_name) net[softmax_name] = L.Softmax(net[reshape_name], axis=2) flatten_name = "{}_flatten".format(conf_name) net[flatten_name] = L.Flatten(net[softmax_name], axis=1) mbox_layers[1] = net[flatten_name] elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC: sigmoid_name = "{}_sigmoid".format(conf_name) net[sigmoid_name] = L.Sigmoid(net[conf_name]) mbox_layers[1] = net[sigmoid_name] net.detection_out = L.DetectionOutput(*mbox_layers, detection_output_param=det_out_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label, detection_evaluate_param=det_eval_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) with open(test_net_file, 'w') as f: print('name: "{}_test"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(test_net_file, job_dir) # Create deploy net. # Remove the first and last layer from test net. deploy_net = net with open(deploy_net_file, 'w') as f: net_param = deploy_net.to_proto() # Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net. del net_param.layer[0] del net_param.layer[-1] net_param.name = '{}_deploy'.format(model_name) net_param.input.extend(['data']) net_param.input_shape.extend([ caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])]) print(net_param, file=f) shutil.copy(deploy_net_file, job_dir) # Create solver. solver = caffe_pb2.SolverParameter( train_net=train_net_file, test_net=[test_net_file], snapshot_prefix=snapshot_prefix, **solver_param) with open(solver_file, 'w') as f: print(solver, file=f) shutil.copy(solver_file, job_dir) max_iter = 0 # Find most recent snapshot. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if iter > max_iter: max_iter = iter train_src_param = '--weights="{}" \\\n'.format(pretrain_model) if resume_training: if max_iter > 0: train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter) if remove_old_models: # Remove any snapshots smaller than max_iter. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) if file.endswith(".caffemodel"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) # Create job file. with open(job_file, 'w') as f: f.write('cd {}\n'.format(caffe_root)) f.write('./build/tools/caffe train \\\n') f.write('--solver="{}" \\\n'.format(solver_file)) f.write(train_src_param) if solver_param['solver_mode'] == P.Solver.GPU: f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name)) else: f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name)) # Copy the python script to job_dir. print("1111111111111") #py_file = os.path.abspath(__file__) py_file = "/home/jhy/caffe-ssd/ssd_pascal_jhyDrone.py" print(py_file) shutil.copy(py_file, job_dir) # Run the job. os.chmod(job_file, stat.S_IRWXU)# 对于拥有者读写执行的权限 if run_soon: subprocess.call(job_file, shell=True)
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import pylab import datetime from PIL import Image import os # the path of caffe & the path of python in caffe import sys,getopt sys.path.append('/home/jhy/caffe-ssd/python') import caffe caffe_root = '/home/jhy/caffe-ssd/' #caffe.set_mode_cpu() caffe.set_mode_gpu() caffe.set_device(0) from google.protobuf import text_format from caffe.proto import caffe_pb2 plt.rcParams['figure.figsize'] = (10, 10) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' model_def = '/home/jhy/wave_test/deploy.prototxt' model_weights = '/home/jhy/wave_test/VGG_jhyDrone_SSD_512x512_iter_100000.caffemodel' #labelmap_file = '/home/jhy/wave_test/labelmap_voc.prototxt' labelmap_file = '/home/jhy/caffe-ssd/data/dronedata/labelmap_voc.prototxt' #get parameter def GetJPGName(InputImagePath): jpg_names = [] jpgs = os.listdir(InputImagePath) for one_jpg in jpgs: if os.path.splitext(one_jpg)[1] == '.jpg': jpg_names.append(one_jpg) return jpg_names def WrongInput(): print("Usage: python brdge_test.py -i InputImagePath -o OutputImagePath -s score -l OutputCSVFileName") sys.exit(1) def GetPara(): try: opts, args = getopt.getopt(sys.argv[1:], "i:o:s:l:") except getopt.GetoptError: WrongInput() #get options into dictionary option=[] value=[] for opt,val in opts: option.append(opt) value.append(val) parameter = dict(zip(option,value)) #check para if len(parameter.keys()) != 4: WrongInput() return parameter['-i'],parameter['-o'], parameter['-s'], parameter['-l'] #about result.csv def InitCSV(OutputCSVFileName): WriteCSVFile = open(OutputCSVFileName, 'w') WriteCSVFile.write( ",".join(['0','1','2','3','4','5','6']) + "\n" ) WriteCSVFile.write( ",".join(['image_name','x1','y1','x2','y2','label','score']) + "\n" ) WriteCSVFile.close() def WriteinCSV(OutputCSVFileName,image_name,xmin,ymin,xmax,ymax,label_name,score): WriteCSVFile = open(OutputCSVFileName, 'a') one_line_data = [image_name,xmin,ymin,xmax,ymax,label_name,score] WriteCSVFile.write( ",".join(one_line_data) + "\n" ) WriteCSVFile.close() def RunDetection(InputImagePath, OutputImagePath, jpg_names, score_threshold): net = caffe.Net(model_def, model_weights, caffe.TEST) for one_jpg in jpg_names: load_path = os.path.join( InputImagePath + '/' + one_jpg ) save_path = os.path.join( OutputImagePath + '/' + one_jpg ) image = caffe.io.load_image(load_path) # net = caffe.Net(model_def, model_weights, caffe.TEST) transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) transformer.set_mean('data', np.array([104, 117, 123])) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data',(2, 1, 0)) # the reference model has channels in BGR order instead of RGB image_resize = 512 net.blobs['data'].reshape(1, 3, image_resize, image_resize) transformed_image = transformer.preprocess('data', image) # transformed_image = detection_init(labelmap_file, net, image) net.blobs['data'].data[...] = transformed_image detections = net.forward()['detection_out'] # Parse the outputs. det_label = detections[0, 0, :, 1] det_conf = detections[0, 0, :, 2] det_xmin = detections[0, 0, :, 3] det_ymin = detections[0, 0, :, 4] det_xmax = detections[0, 0, :, 5] det_ymax = detections[0, 0, :, 6] # Get detections with confidence higher than 0.6. top_indices = [i for i, conf in enumerate(det_conf) if conf >= score_threshold] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() # get_lablename_fcn file = open(labelmap_file, 'r') labelmap = caffe_pb2.LabelMap() text_format.Merge(str(file.read()), labelmap) num_labels = len(labelmap.item) labelnames = [] for label in top_label_indices: found = False for i in range(0, num_labels): if label == labelmap.item[i].label: found = True labelnames.append(labelmap.item[i].display_name) break assert found == True top_labels = labelnames top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] # Plot the boxes in test picture colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist() plt.switch_backend('agg') currentAxis = plt.gca() if top_conf.shape[0] == 0: print(one_jpg) for i in range(top_conf.shape[0]): # bbox value xmin = int(round(top_xmin[i] * image.shape[1])) ymin = int(round(top_ymin[i] * image.shape[0])) xmax = int(round(top_xmax[i] * image.shape[1])) ymax = int(round(top_ymax[i] * image.shape[0])) # score score = top_conf[i] # label label = int(top_label_indices[i]) label_name = top_labels[i] # display info2: label score xmin ymin xmax ymax #display_txt = '' display_txt = '%s: %.2f' % (label_name, score) #write in CSV WriteinCSV("/home/jhy/wave_test/reult_forktest_images/result.csv", "forktest_images/"+one_jpg, str(xmin), str(ymin), str(xmax), str(ymax) ,label_name, str(score) ) # display info1: label score coords = (xmin, ymin), xmax - xmin + 1, ymax - ymin + 1 color = colors[label] currentAxis.add_patch( plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2) ) currentAxis.text( xmin, ymin, display_txt, bbox={'facecolor': color,'alpha': 0.5} ) plt.imshow(image) plt.axis('off') plt.savefig(save_path,bbox_inches='tight') label_set = set(top_labels) if __name__ == '__main__': InputImagePath,OutputImagePath,score_threshold,OutputCSVFileName = GetPara() InitCSV(OutputCSVFileName) jpg_names = GetJPGName(InputImagePath) RunDetection(InputImagePath, OutputImagePath, jpg_names, float(score_threshold) )
#encoding=utf8 ''' Detection with SSD In this example, we will load a SSD model and use it to detect objects. ''' import os import sys import argparse import numpy as np from PIL import Image, ImageDraw # Make sure that caffe is on the python path: caffe_root = './' os.chdir(caffe_root) sys.path.insert(0, os.path.join(caffe_root, 'python')) import caffe from google.protobuf import text_format from caffe.proto import caffe_pb2 def get_labelname(labelmap, labels): num_labels = len(labelmap.item) labelnames = [] if type(labels) is not list: labels = [labels] for label in labels: found = False for i in xrange(0, num_labels): if label == labelmap.item[i].label: found = True labelnames.append(labelmap.item[i].display_name) break assert found == True return labelnames class CaffeDetection: def __init__(self, gpu_id, model_def, model_weights, image_resize, labelmap_file): caffe.set_device(gpu_id) caffe.set_mode_gpu() self.image_resize = image_resize # Load the net in the test phase for inference, and configure input preprocessing. self.net = caffe.Net(model_def, # defines the structure of the model model_weights, # contains the trained weights caffe.TEST) # use test mode (e.g., don't perform dropout) # input preprocessing: 'data' is the name of the input blob == net.inputs[0] self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape}) self.transformer.set_transpose('data', (2, 0, 1)) self.transformer.set_mean('data', np.array([104, 117, 123])) # mean pixel # the reference model operates on images in [0,255] range instead of [0,1] self.transformer.set_raw_scale('data', 255) # the reference model has channels in BGR order instead of RGB self.transformer.set_channel_swap('data', (2, 1, 0)) # load PASCAL VOC labels file = open(labelmap_file, 'r') self.labelmap = caffe_pb2.LabelMap() text_format.Merge(str(file.read()), self.labelmap) def detect(self, image_file, conf_thresh=0.5, topn=5): ''' SSD detection ''' # set net to batch size of 1 # image_resize = 300 self.net.blobs['data'].reshape(1, 3, self.image_resize, self.image_resize) image = caffe.io.load_image(image_file) #Run the net and examine the top_k results transformed_image = self.transformer.preprocess('data', image) self.net.blobs['data'].data[...] = transformed_image # Forward pass. detections = self.net.forward()['detection_out'] # Parse the outputs. det_label = detections[0,0,:,1] det_conf = detections[0,0,:,2] det_xmin = detections[0,0,:,3] det_ymin = detections[0,0,:,4] det_xmax = detections[0,0,:,5] det_ymax = detections[0,0,:,6] # Get detections with confidence higher than 0.6. top_indices = [i for i, conf in enumerate(det_conf) if conf >= conf_thresh] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_labels = get_labelname(self.labelmap, top_label_indices) top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] result = [] for i in xrange(min(topn, top_conf.shape[0])): xmin = top_xmin[i] # xmin = int(round(top_xmin[i] * image.shape[1])) ymin = top_ymin[i] # ymin = int(round(top_ymin[i] * image.shape[0])) xmax = top_xmax[i] # xmax = int(round(top_xmax[i] * image.shape[1])) ymax = top_ymax[i] # ymax = int(round(top_ymax[i] * image.shape[0])) score = top_conf[i] label = int(top_label_indices[i]) label_name = top_labels[i] result.append([xmin, ymin, xmax, ymax, label, score, label_name]) return result def main(args): '''main ''' detection = CaffeDetection(args.gpu_id, args.model_def, args.model_weights, args.image_resize, args.labelmap_file) result = detection.detect(args.image_file) print result img = Image.open(args.image_file) draw = ImageDraw.Draw(img) width, height = img.size print width, height for item in result: xmin = int(round(item[0] * width)) ymin = int(round(item[1] * height)) xmax = int(round(item[2] * width)) ymax = int(round(item[3] * height)) draw.rectangle([xmin, ymin, xmax, ymax], outline=(255, 0, 0)) draw.text([xmin, ymin], item[-1] + str(item[-2]), (0, 0, 255)) print item print [xmin, ymin, xmax, ymax] print [xmin, ymin], item[-1] img.save('./testimage/jhydetect_result_DSC00001.jpg') def parse_args(): '''parse args''' parser = argparse.ArgumentParser() parser.add_argument('--gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--labelmap_file', default='/home/jhy/caffe-ssd/data/dronedata/labelmap_voc.prototxt') parser.add_argument('--model_def', default='/home/jhy/models/VGGNet/jhyDrone/SSD_512x512/deploy.prototxt') parser.add_argument('--image_resize', default=512, type=int) parser.add_argument('--model_weights', default='/home/jhy/models/VGGNet/jhyDrone/SSD_512x512/' 'VGG_jhyDrone_SSD_512x512_iter_10000.caffemodel') parser.add_argument('--image_file', default='/home/jhy/caffe-ssd/examples/images/ssd_test_image/DSC00001.jpg') return parser.parse_args() if __name__ == '__main__': main(parse_args())