对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。
对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。
Convert()函数有三种形式的定义,它们定义形式如下:
im.convert(mode) ⇒ image
im.convert(“P”, **options) ⇒ image
im.convert(mode, matrix) ⇒ image
使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。
通过博客“Python图像处理库PIL的基本概念介绍”,我们知道PIL中有九种不同模式。分别为1,L,P,RGB,RGBA,CMYK,YCbCr,I,F。
一、模式“RGB”转换为其他不同模式
1、 模式“1”
模式“1”为二值图像,非黑即白。但是它每个像素用8个bit表示,0表示黑,255表示白。下面我们将lena图像转换为“1”图像。
2、 模式“L”
模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:
L = R * 299/1000 + G * 587/1000+ B * 114/1000
下面我们将lena图像转换为“L”图像。
3、 模式“P”
模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。
下面我们使用默认的调色板将lena图像转换为“P”图像。
4、 模式“RGBA”
模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。
下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。
5、 模式“CMYK”
模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。
四种标准颜色是:C:Cyan =青色,又称为‘天蓝色’或是‘湛蓝’M:Magenta =品红色,又称为‘洋红色’;Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。
6、 模式“YCbCr”
模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。
模式“RGB”转换为“YCbCr”的公式如下:
Y= 0.257*R+0.504*G+0.098*B+16
Cb = -0.148*R-0.291*G+0.439*B+128
Cr = 0.439*R-0.368*G-0.071*B+128
7、 模式“I”
模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:
I = R * 299/1000 + G * 587/1000 + B * 114/1000
8、 模式“F”
模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:
F = R * 299/1000+ G * 587/1000 + B * 114/1000
模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分