pytorch lstm crf 代码理解

好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来。

原文 PyTorch Tutorials

参考了很多其他大神的博客,https://blog.csdn.net/cuihuijun1hao/article/details/79405740

https://www.jianshu.com/p/97cb3b6db573

至于原理,非常建议读这篇英文博客,写的非常非常非常好!!!!!!值得打印出来细细品读!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!https://createmomo.github.io/2017/09/12/CRF_Layer_on_the_Top_of_BiLSTM_1/

 

在这位大神的基础上,根据自己的debug又添加了一些注释pytorch版的bilstm+crf实现sequence label

为了方便理解:

注意,

self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size)) 说明了转移矩阵是随机的!!!随机的!!!随机的!!!,而且放入了网络中,会更新的!!!会更新的!!!会更新的!!!

解释一下重点的函数功能:

def log_sum_exp(vec)  这个函数,是一个封装好的数学公式,里面先做减法的原因在于,减去最大值可以避免e的指数次,计算机上溢。

def _forward_alg(self, feats): 这个函数,只是根据 随机的transitions ,前向传播算出的一个score,用到了动态规划的思想,但是因为用的是随机的转移矩阵,算出的值很大 score>20

def _get_lstm_features(self, sentence): 可以看出,函数里经过了embedding,lstm,linear层,是根据LSTM算出的一个矩阵。这里是11x5的一个tensor,而这个11x5的tensor,就是发射矩阵!!!发射矩阵!!!发射矩阵!!!(emission matrix)

def _score_sentence(self, feats, tags):是根据真实的标签算出的一个score,这与上面的def _forward_alg(self, feats)有什么不同的地方嘛?共同之处在于,两者都是用的随机的转移矩阵算的score,但是不同地方在于,上面那个函数算了一个最大可能路径,但是实际上可能不是真实的 各个标签转移的值。例如说,真实的标签 是 N V V,但是因为transitions是随机的,所以上面的函数得到的其实是N  N N这样,两者之间的score就有了差距。而后来的反向传播,就能够更新transitions,使得转移矩阵逼近真实的“转移矩阵”。(个人理解)

def _viterbi_decode(self, feats):维特比解码,实际上就是在预测的时候使用了,输出得分与路径值。

这个函数是重点:
def neg_log_likelihood(self, sentence, tags):
    feats = self._get_lstm_features(sentence)#11*5 经过了LSTM+Linear矩阵后的输出,之后作为CRF的输入。
    forward_score = self._forward_alg(feats) #0维的一个得分,20.*来着
    gold_score = self._score_sentence(feats, tags)#tensor([ 4.5836])

    return forward_score - gold_score #这是两者之间的差值,后来直接根据这个差值,反向传播。。。神奇!!!!!!

def forward(self, sentence):forward函数只是用来预测了,train的时候没用调用它,这让我感到很震惊,还有这种操作?

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim

def to_scalar(var): #var是Variable,维度是1
    # returns a python float
    return var.view(-1).data.tolist()[0]

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return to_scalar(idx)

def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    tensor = torch.LongTensor(idxs)
    return autograd.Variable(tensor)

# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec): #vec是1*5, type是Variable

    max_score = vec[0, argmax(vec)]
    #max_score维度是1, max_score.view(1,-1)维度是1*1,max_score.view(1, -1).expand(1, vec.size()[1])的维度是1*5
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) # vec.size()维度是1*5
    return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))#为什么指数之后再求和,而后才log呢

class BiLSTM_CRF(nn.Module):
    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tag_to_ix = tag_to_ix
        self.tagset_size = len(tag_to_ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)

        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j. 居然是随机初始化的!!!!!!!!!!!!!!!之后的使用也是用这随机初始化的值进行操作!!
        self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)),
                autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)))
    #预测序列的得分
    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.) #1*5 而且全是-10000

        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0. #因为start tag是4,所以tensor([[-10000., -10000., -10000.,      0., -10000.]]),将start的值为零,表示开始进行网络的传播,

        # Wrap in a variable so that we will get automatic backprop
        forward_var = autograd.Variable(init_alphas) #初始状态的forward_var,随着step t变化

        # Iterate through the sentence 会迭代feats的行数次,
        for feat in feats: #feat的维度是5 依次把每一行取出来~
            alphas_t = []  # The forward variables at this timestep
            for next_tag in range(self.tagset_size):#next tag 就是简单 i,从0到len
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) #维度是1*5 噢噢!原来,LSTM后的那个矩阵,就被当做是emit score了

                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1) #维度是1*5
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                #第一次迭代时理解:
                # trans_score所有其他标签到B标签的概率
                # 由lstm运行进入隐层再到输出层得到标签B的概率,emit_score维度是1*5,5个值是相同的
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).unsqueeze(0))
            #此时的alphas t 是一个长度为5,例如: [tensor(0.8259), tensor(2.1739), tensor(1.3526), tensor(-9999.7168), tensor(-0.7102)]
            forward_var = torch.cat(alphas_t).view(1, -1)#到第(t-1)step时5个标签的各自分数
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] #最后只将最后一个单词的forward var与转移 stop tag的概率相加 tensor([[   21.1036,    18.8673,    20.7906, -9982.2734, -9980.3135]])
        alpha = log_sum_exp(terminal_var) #alpha是一个0维的tensor

        return alpha

    #得到feats
    def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        #embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        embeds = self.word_embeds(sentence)

        embeds = embeds.unsqueeze(1)

        lstm_out, self.hidden = self.lstm(embeds, self.hidden)#11*1*4
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim) #11*4

        lstm_feats = self.hidden2tag(lstm_out)#11*5 is a linear layer

        return lstm_feats

    #得到gold_seq tag的score 即根据真实的label 来计算一个score,但是因为转移矩阵是随机生成的,故算出来的score不是最理想的值
    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence #feats 11*5  tag 11 维
        score = autograd.Variable(torch.Tensor([0]))
        tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) #将START_TAG的标签3拼接到tag序列最前面,这样tag就是12个了

        for i, feat in enumerate(feats):
            #self.transitions[tags[i + 1], tags[i]] 实际得到的是从标签i到标签i+1的转移概率
            #feat[tags[i+1]], feat是step i 的输出结果,有5个值,对应B, I, E, START_TAG, END_TAG, 取对应标签的值
            #transition【j,i】 就是从i ->j 的转移概率值
            score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score
    #解码,得到预测的序列,以及预测序列的得分
    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = autograd.Variable(init_vvars)
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag] #其他标签(B,I,E,Start,End)到标签next_tag的概率
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)#从step0到step(i-1)时5个序列中每个序列的最大score
            backpointers.append(bptrs_t) #bptrs_t有5个元素

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]#其他标签到STOP_TAG的转移概率
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):#从后向前走,找到一个best路径
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()# 把从后向前的路径正过来
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)#11*5 经过了LSTM+Linear矩阵后的输出,之后作为CRF的输入。
        forward_score = self._forward_alg(feats) #0维的一个得分,20.*来着
        gold_score = self._score_sentence(feats, tags)#tensor([ 4.5836])

        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

START_TAG = ""
STOP_TAG = ""
EMBEDDING_DIM = 5
HIDDEN_DIM = 4

# Make up some training data
training_data = [("the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split()),
                 ("georgia tech is a university in georgia".split(), "B I O O O O B".split())]

word_to_ix = {}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)

tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}

model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

# Check predictions before training
# precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
# precheck_tags = torch.LongTensor([tag_to_ix[t] for t in training_data[0][1]])
# print(model(precheck_sent))

# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(1):  # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training_data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

        # Step 2. Get our inputs ready for the network, that is,
        # turn them into Variables of word indices.
        sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = torch.LongTensor([tag_to_ix[t] for t in tags])

        # Step 3. Run our forward pass.
        neg_log_likelihood = model.neg_log_likelihood(sentence_in, targets)#tensor([ 15.4958]) 最大的可能的值与 根据随机转移矩阵 计算的真实值 的差

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        neg_log_likelihood.backward()#卧槽,这就能更新啦???进行了反向传播,算了梯度值。debug中可以看到,transition的_grad 有了值 torch.Size([5, 5])
        optimizer.step()

# Check predictions after training
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
print(model(precheck_sent)[0]) #得分
print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^')
print(model(precheck_sent)[1]) #tag sequence

心得的地方:

反向传播不需要一定使用forward(),而且不需要定义loss=nn.MSError()等,直接score1 - score2 ,就可以反向传播了。

无论两个矩阵你咋操作,只要满足y= f(x,w),不管你是只取一行,还是几行,加减乘数。只要能够满足这个式子,就能够反向传播,前提是    self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))   将你想要更新的矩阵,放入到module的参数中,这样才能够更新。

即便你是这样用的:

for feat in feats: #feat的维度是5 依次把每一行取出来~
    alphas_t = []  # The forward variables at this timestep
    for next_tag in range(self.tagset_size):#next tag 就是简单 i,从0到len
        # broadcast the emission score: it is the same regardless of
        # the previous tag
        emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) #维度是1*5 噢噢!原来,LSTM后的那个矩阵,就被当做是emit score了

        # the ith entry of trans_score is the score of transitioning to
        # next_tag from i
        trans_score = self.transitions[next_tag].view(1, -1) #维度是1*5
        # The ith entry of next_tag_var is the value for the
        # edge (i -> next_tag) before we do log-sum-exp
        #第一次迭代时理解:
        # trans_score所有其他标签到B标签的概率
        # 由lstm运行进入隐层再到输出层得到标签B的概率,emit_score维度是1*5,5个值是相同的
        next_tag_var = forward_var + trans_score + emit_score
        # The forward variable for this tag is log-sum-exp of all the
        # scores.
        alphas_t.append(log_sum_exp(next_tag_var).unsqueeze(0))
    #此时的alphas t 是一个长度为5,例如: [tensor(0.8259), tensor(2.1739), tensor(1.3526), tensor(-9999.7168), tensor(-0.7102)]
    forward_var = torch.cat(alphas_t).view(1, -1)#到第(t-1)step时5个标签的各自分数
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] #最后只将最后一个单词的forward var与转移 stop tag的概率相加 tensor([[   21.1036,    18.8673,    20.7906, -9982.2734, -9980.3135]])
alpha = log_sum_exp(terminal_var) #alpha是一个0维的tensor

或者是这样用的

score = autograd.Variable(torch.Tensor([0]))
tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) #将START_TAG的标签3拼接到tag序列最前面,这样tag就是12个了

for i, feat in enumerate(feats):
    #self.transitions[tags[i + 1], tags[i]] 实际得到的是从标签i到标签i+1的转移概率
    #feat[tags[i+1]], feat是step i 的输出结果,有5个值,对应B, I, E, START_TAG, END_TAG, 取对应标签的值
    #transition【j,i】 就是从i ->j 的转移概率值
    score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score

看样子,每个循环里只是去了转移矩阵的一行,或者就是一个值,进行操作,但是!转移矩阵就是能够更新!!!至于为什么能够更新!!我不知道:(

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

2018.12.12

心得,发射矩阵是 lstm算出来的,是要通过网络学习的。转移矩阵是单独定义的,要学习的。初始矩阵,是[-1000,-1000,-1000,0,-1000]固定的,因为当加了开始符号后,则第一个位置是开始符号的概率是100%。

显式的加入了start标记,隐式的使用了end标记(总是最后多一步转移到end)的分数

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

以上都是个人理解,恳请勘误!

 

你可能感兴趣的:(LintCode)