Sarsa

1、算法:
整个算法还是一直不断更新 Q table 里的值, 然后再根据新的值来判断要在某个 state 采取怎样的 action. 不过于 Qlearning 不同之处:
Sarsa在当前 state 已经想好了 state 对应的 action, 而且想好了 下一个 state_ 和下一个 action_ (Qlearning 还没有想好下一个 action_)
更新 Q(s,a) 的时候基于的是下一个 Q(s_, a_) (Qlearning 是基于 maxQ(s_)),这种不同之处使得 Sarsa 相对于 Qlearning, 更加的胆小. 因为 Qlearning 永远都是想着 maxQ 最大化, 因为这个 maxQ 而变得贪婪, 不考虑其他非 maxQ 的结果. 我们可以理解成 Qlearning 是一种贪婪, 大胆, 勇敢的算法. 而 Sarsa 是一种保守的算法, 他在乎每一步决策, 对于错误和死亡比较铭感. 这一点我们会在可视化的部分看出他们的不同. 两种算法都有他们的好处, 比如在实际中, 你比较在乎机器的损害, 用一种保守的算法, 在训练时就能减少损坏的次数.
Sarsa_第1张图片

2、代码实现:
maze_env: 环境模块,;
RL_brain:RL 的大脑部分

from maze_env import Maze
from RL_brain import SarsaTable

2.1、迭代部分:

def update():
    for episode in range(100):
        # 初始化环境
        observation = env.reset()

        # Sarsa 根据 state 观测选择行为
        action = RL.choose_action(str(observation))

        while True:
            # 刷新环境
            env.render()

            # 在环境中采取行为, 获得下一个 state_ (obervation_), reward, 和是否终止
            observation_, reward, done = env.step(action)

            # 根据下一个 state (obervation_) 选取下一个 action_
            action_ = RL.choose_action(str(observation_))

            # 从 (s, a, r, s, a) 中学习, 更新 Q_tabel 的参数 ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # 将下一个当成下一步的 state (observation) and action
            observation = observation_
            action = action_

            # 终止时跳出循环
            if done:
                break

    # 大循环完毕
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()

2.2、主结构(1):

class SarsaTable:
    # 初始化 (与之前一样)
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):

    # 选行为 (与之前一样)
    def choose_action(self, observation):

    # 学习更新参数 (有改变)
    def learn(self, s, a, r, s_):

    # 检测 state 是否存在 (与之前一样)
    def check_state_exist(self, state):

主结构(2):继承的思想:
2.2.1、父类:

import numpy as np
import pandas as pd


class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        ... # 和 QLearningTable 中的代码一样

    def check_state_exist(self, state):
        ... # 和 QLearningTable 中的代码一样

    def choose_action(self, observation):
        ... # 和 QLearningTable 中的代码一样

    def learn(self, *args):
        pass # 每种的都有点不同, 所以用 pass

2.2.2、Q-Learning子类:

class QLearningTable(RL):   # 继承了父类 RL
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)    # 表示继承关系

    def learn(self, s, a, r, s_):   # learn 的方法在每种类型中有不一样, 需重新定义
        self.check_state_exist(s_)
        q_predict = self.q_table.ix[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.ix[s_, :].max()
        else:
            q_target = r
        self.q_table.ix[s, a] += self.lr * (q_target - q_predict)

2.2.3、Sarsa子类:

class SarsaTable(RL):   # 继承 RL class

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)    # 表示继承关系

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.ix[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.ix[s_, a_]  # q_target 基于选好的 a_ 而不是 Q(s_) 的最大值
        else:
            q_target = r  # 如果 s_ 是终止符
        self.q_table.ix[s, a] += self.lr * (q_target - q_predict)  # 更新 q_table

2.3、环境:


import numpy as np
np.random.seed(1)
import tkinter as tk
import time


UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_H * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.5)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return self.canvas.coords(self.rect)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.canvas.coords(self.rect)  # next state

        # reward function
        if s_ == self.canvas.coords(self.oval):
            reward = 1
            done = True
        elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
            reward = -1
            done = True
        else:
            reward = 0
            done = False

        return s_, reward, done

    def render(self):
        time.sleep(0.1)
        self.update()

2.4、具体实现:

import numpy as np
import pandas as pd

class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = action_space  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy

        self.q_table = pd.DataFrame(columns=self.actions)

    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            self.q_table = self.q_table.append(
                pd.Series(
                    [0]*len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            )

    def choose_action(self, observation):
        self.check_state_exist(observation)
        # action selection
        if np.random.rand() < self.epsilon:
            # choose best action
            state_action = self.q_table.ix[observation, :]
            state_action = state_action.reindex(np.random.permutation(state_action.index))     # some actions have same value
            action = state_action.argmax()
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def learn(self, *args):
        pass


# off-policy
class QLearningTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_):
        self.check_state_exist(s_)
        q_predict = self.q_table.ix[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.ix[s_, :].max()  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.ix[s, a] += self.lr * (q_target - q_predict)  # update


# on-policy
class SarsaTable(RL):

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.ix[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.ix[s_, a_]  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.ix[s, a] += self.lr * (q_target - q_predict)  # update

你可能感兴趣的:(强化学习)