图像处理项目资源整理

深度学习项目图像处理领域的代码链接。

图像识别,图像生成,看图说话等等方向的代码;


图像生成

绘画风格到图片的转换:Neural Style: https://github.com/jcjohnson/neural-style

图像类比转换:image-analogies :https://github.com/awentzonline/image-analogies

根据涂鸦生成图片:Neural Doodle :https://github.com/alexjc/neural-doodle

根据涂鸦类比图片:Sketchy:https://github.com/janesjanes/sketchy

根据图片生成铅笔画:Pencil:https://github.com/fumin/pencil

把一副图像变成铅笔水粉画。

手写文字模拟:rnnlib :https://github.com/szcom/rnnlib

转换风景图片:http://transattr.cs.brown.edu

这个项目可以识别和理解图片中的风景,并且可以根据用户提出的条件,定向改变原风景画中的环境(比如more night)

图片变Emojis表情:http://engineering.curalate.com/2016/01/20/emojinet.html

增加图片分辨率:srez:https://github.com/david-gpu/srez

图片自动上色:Colornet :https://github.com/pavelgonchar/colornet

生成可爱的动漫头像:AnimeGAN :https://github.com/jayleicn/animeGAN

骡子变斑马:CycleGAN and pix2pix in PyTorch :https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git

强大的图像生成器:DiscoGAN in PyTorch :https://github.com/carpedm20/DiscoGAN-pytorch.git

使用RNN生成手写数字:DRAW implmentation :https://github.com/skaae/lasagne-draw

使用CNN来放大图片:waifu2x :https://github.com/nagadomi/waifu2x

根据图片生成一段描述:Show and Tell :https://github.com/tensorflow/models/tree/master/im2txt

根据图片讲故事:neural-storyteller :https://github.com/ryankiros/neural-storyteller

根据图片将故事2:NeuralTalk2:https://github.com/karpathy/neuraltalk2

识别图片中的文字:CRNN for image-based sequence recognition:https://github.com/bgshih/crnn.git

图像识别

用于物体识别的全卷积网络:PyTorch-FCN:https://github.com/wkentaro/pytorch-fcn.git

引入注意力的卷积网络:Attention Transfer:https://github.com/szagoruyko/attention-transfer.git

物体识别实例:Deep-Learning:

https://github.com/priya-dwivedi/Deep-Learning/blob/master/Object_Detection_Tensorflow_API.ipynb

物体识别API:Tensorflow Object Detection API:https://github.com/tensorflow/models/tree/master/object_detection

推理场景结构:SfMLearner :https://github.com/tinghuiz/SfMLearner

用于分辨色情图像的open_nsfw :https://github.com/yahoo/open_nsfw

人脸识别:Open Face :https://github.com/cmusatyalab/openface

易用人脸识别:Face_recognition : https://github.com/ageitgey/face_recognition#face-recognition

快速人脸识别:MobileID:https://github.com/liuziwei7/mobile-id

图像识别框架1:AlexNet & VGG Net & GoogleNet & ResNet

AlexNet

https://gist.github.com/JBed/c2fb3ce8ed299f197eff

VGG Ne

https://github.com/fchollet/keras/blob/master/keras/applications/vgg16.py

GoogleNet

https://github.com/fchollet/keras/blob/master/keras/applications/inception_v3.py

ResNet

https://github.com/fchollet/keras/blob/master/keras/applications/resnet50.py

图像识别框架2:ResNeXt & RCNN & YOLO & SqueezeNet & SegNet

ResNeXt

https://github.com/titu1994/Keras-ResNeXt

RCNN (基于区域的 CNN)

https://github.com/yhenon/keras-frcnn

YOLO (You Only Look once)

https://github.com/allanzelener/YAD2K

SqueezeNet

https://github.com/rcmalli/keras-squeezenet

SegNet

https://github.com/imlab-uiip/keras-segnet

预训练的图像识别模型:functional-zoo

https://github.com/szagoruyko/functional-zoo.git

由PyTorch和Tensorflow实现的常用图像识别模型包含预训练参数。

预定义的CNN过滤器: PyScatWave

https://github.com/edouardoyallon/pyscatwave

一套预定义的filter,用于增强图像识别的效果。

计算图片中物体的相似度:Conditional Similarity Networks (CSNs)

https://github.com/andreasveit/conditional-similarity-networks.git

《Conditional Similarity Networks》的PyTorch实现,可以根据不同的条件计算图片中物体的相似度。

量子化学中的神经信息传递(・_・;Neural Message Passing for Quantum Chemistry

https://github.com/priba/nmp_qc.git

论文《Neural Message Passing for Quantum Chemistry》的PyTorch实现,讲的是量子化学里的神经信息传递!听起来碉堡了。

图像理解

Visual Question Answering in Pytorch

https://github.com/Cadene/vqa.pytorch.git

一个PyTorch实现的优秀视觉推理问答系统,是基于论文《MUTAN: Multimodal Tucker Fusion for Visual Question Answering》实现的。项目中有详细的配置使用方法说明。

Facebook看图答题:Clevr-IEP

https://github.com/facebookresearch/clevr-iep.git

Facebook Research 论文《Inferring and Executing Programs for Visual Reasoning》的PyTorch实现,讲的是一个可以基于图片进行关系推理问答的网络。

你可能感兴趣的:(计算机视觉与图像处理)