对抗神经网络

GANs

这种训练方式定义了一种全新的网络结构,就是生成对抗网络,也就是 GANs。

根据这个名字就可以知道这个网络是由两部分组成的,第一部分是生成,第二部分是对抗。简单来说,就是有一个生成网络和一个判别网络,通过训练让两个网络相互竞争,生成网络来生成假的数据,对抗网络通过判别器去判别真伪,最后希望生成器生成的数据能够以假乱真。

判别网络

判别网络的结构非常简单,就是一个二分类器,结构如下:

  • 全连接(784 -> 256)
  • leakyrelu,  是 0.2
  • 全连接(256 -> 256)
  • leakyrelu,  是 0.2
  • 全连接(256 -> 1)

其中 leakyrelu 是指 f(x) = max( x, x)

def discriminator():
    net = nn.Sequential(        
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1)
        )
    return net

生成网络

接下来我们看看生成网络,生成网络的结构也很简单,就是根据一个随机噪声生成一个和数据维度一样的张量,结构如下:

  • 全连接(噪音维度 -> 1024)
  • relu
  • 全连接(1024 -> 1024)
  • relu
  • 全连接(1024 -> 784)
  • tanh 将数据裁剪到 -1 ~ 1 之间
def generator(noise_dim=NOISE_DIM):   
    net = nn.Sequential(
        nn.Linear(noise_dim, 1024),
        nn.ReLU(True),
        nn.Linear(1024, 1024),
        nn.ReLU(True),
        nn.Linear(1024, 784),
        nn.Tanh()
    )
    return net

接下来是两个网络的loss,对于判别网络来说,我们需要让它的判断越来越好,所以我们需要用真实数据和1做loss,假的数据和0做loss。

bce_loss = nn.BCEWithLogitsLoss()

def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
    size = logits_real.shape[0]
    true_labels = Variable(torch.ones(size, 1)).float().cuda() #全1的tensor
    false_labels = Variable(torch.zeros(size, 1)).float().cuda() #全0的tensor
    loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
    return loss

而生成网络我们需要让他生成的假数据接近真实的数据,所以将生成的假数据进入我们训练好的判别器得到分数并和全1的tensor做loss。

def generator_loss(logits_fake): # 生成器的 loss  
    size = logits_fake.shape[0]
    true_labels = Variable(torch.ones(size, 1)).float().cuda()
    loss = bce_loss(logits_fake, true_labels)
    return loss

优化函数。

# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
    optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))
    return optimizer
def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, 
                noise_size=96, num_epochs=10):
    iter_count = 0
    for epoch in range(num_epochs):
        for x, _ in train_data:
            bs = x.shape[0]
            # 判别网络
            real_data = Variable(x).view(bs, -1).cuda() # 真实数据
            logits_real = D_net(real_data) # 判别网络得分
            
            sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布
            g_fake_seed = Variable(sample_noise).cuda()
            fake_images = G_net(g_fake_seed) # 生成的假的数据
            logits_fake = D_net(fake_images) # 判别网络得分

            d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
            D_optimizer.zero_grad()
            d_total_error.backward()
            D_optimizer.step() # 优化判别网络
            
            # 生成网络
            g_fake_seed = Variable(sample_noise).cuda()
            fake_images = G_net(g_fake_seed) # 生成的假的数据

            gen_logits_fake = D_net(fake_images) # 将假的数据在判别器得到分数
            g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
            G_optimizer.zero_grad()
            g_error.backward()
            G_optimizer.step() # 优化生成网络

            if (iter_count % show_every == 0):
                print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.data[0], g_error.data[0]))
                imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
                show_images(imgs_numpy[0:16])
                plt.show()
                print()
            iter_count += 1
D = discriminator().cuda()
G = generator().cuda()

D_optim = get_optimizer(D)
G_optim = get_optimizer(G)

train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)

Least Squares GAN

Least Squares GAN 比最原始的 GANs 的 loss 更加稳定,通过名字我们也能够看出这种 GAN 是通过最小平方误差来进行估计,而不是通过二分类的损失函数,下面我们看看 loss 的计算公式

$$\ell_G  =  \frac{1}{2}\mathbb{E}_{z \sim p(z)}\left[\left(D(G(z))-1\right)^2\right]$$$$ \ell_D = \frac{1}{2}\mathbb{E}_{x \sim p_\text{data}}\left[\left(D(x)-1\right)^2\right] + \frac{1}{2}\mathbb{E}_{z \sim p(z)}\left[ \left(D(G(z))\right)^2\right]$$

可以看到 Least Squares GAN 通过最小二乘代替了二分类的 loss,下面我们定义一下 loss 函数

def ls_discriminator_loss(scores_real, scores_fake):
    loss = 0.5 * ((scores_real - 1) ** 2).mean() + 0.5 * (scores_fake ** 2).mean()
    return loss

def ls_generator_loss(scores_fake):
    loss = 0.5 * ((scores_fake - 1) ** 2).mean()
    return loss

Deep Convolutional GANs

深度卷积生成对抗网络特别简单,就是将生成网络和对抗网络都改成了卷积网络的形式,下面我们来实现一下

卷积判别网络

卷积判别网络就是一个一般的卷积网络,结构如下

  • 32 Filters, 5x5, Stride 1, Leaky ReLU(alpha=0.01)
  • Max Pool 2x2, Stride 2
  • 64 Filters, 5x5, Stride 1, Leaky ReLU(alpha=0.01)
  • Max Pool 2x2, Stride 2
  • Fully Connected size 4 x 4 x 64, Leaky ReLU(alpha=0.01)
  • Fully Connected size 1
class build_dc_classifier(nn.Module):
    def __init__(self):
        super(build_dc_classifier, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 32, 5, 1),
            nn.LeakyReLU(0.01),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(32, 64, 5, 1),
            nn.LeakyReLU(0.01),
            nn.MaxPool2d(2, 2)
        )
        self.fc = nn.Sequential(
            nn.Linear(1024, 1024),
            nn.LeakyReLU(0.01),
            nn.Linear(1024, 1)
        )
        
    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

卷积生成网络

卷积生成网络需要将一个低维的噪声向量变成一个图片数据,结构如下

  • Fully connected of size 1024, ReLU
  • BatchNorm
  • Fully connected of size 7 x 7 x 128, ReLU
  • BatchNorm
  • Reshape into Image Tensor
  • 64 conv2d^T filters of 4x4, stride 2, padding 1, ReLU
  • BatchNorm
  • 1 conv2d^T filter of 4x4, stride 2, padding 1, TanH
class build_dc_generator(nn.Module): 
    def __init__(self, noise_dim=NOISE_DIM):
        super(build_dc_generator, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(noise_dim, 1024),
            nn.ReLU(True),
            nn.BatchNorm1d(1024),
            nn.Linear(1024, 7 * 7 * 128),
            nn.ReLU(True),
            nn.BatchNorm1d(7 * 7 * 128)
        )
        
        self.conv = nn.Sequential(
            nn.ConvTranspose2d(128, 64, 4, 2, padding=1),
            nn.ReLU(True),
            nn.BatchNorm2d(64),
            nn.ConvTranspose2d(64, 1, 4, 2, padding=1),
            nn.Tanh()
        )
        
    def forward(self, x):
        x = self.fc(x)
        x = x.view(x.shape[0], 128, 7, 7) # reshape 通道是 128,大小是 7x7
        x = self.conv(x)
        return x

原始链接:https://github.com/L1aoXingyu/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_GAN/gan.ipynb

你可能感兴趣的:(对抗神经网络)