标准的更新一段区间的和啦
线段树讲解:http://www.cnblogs.com/TenosDoIt/p/3453089.html
百度搜索的第一个还是很好哒hhh
写的特别详细(就是喜欢这样的blog23333)
这里没用到传说中的区间更新,看起来还能简单一点hhh
#include
#include
#include
#define n 50005 << 2
#define lson root * 2 //数组中的左孩子
#define rson root * 2 + 1 //数组中的右孩子
using namespace std;
int Tree[ n ]; //线段树(递归)
//建立树
void build ( int root, int st, int end ) {
if ( st == end ) //叶子节点
scanf ( "%d", &Tree[ root ] );
else {
int mid = ( st + end ) / 2;
build ( lson, st, mid ); //左孩子
build ( rson, mid + 1, end ); //右孩子
Tree[ root ] = Tree[ lson ] + Tree[ rson ];
}
}
//计算和;
// st,end是所求范围;ST,END是当前搜索到的范围
int query ( int root, int ST, int END, int st, int end ) {
if ( st > END || end < ST ) //不在范围内
return 0;
if ( st <= ST && end >= END ) //完全在范围里
return Tree[ root ];
int mid = ( ST + END ) / 2;
return query ( lson, ST, mid, st, end ) + query ( rson, mid + 1, END, st, end );
}
//更新叶子节点的值
// indx是建树之前,在原数组里的位置
void update ( int root, int st, int end, int indx, int val ) {
if ( st == end ) {
if ( st == indx )
Tree[ root ] += val;
return;
}
int mid = ( st + end ) / 2;
if ( indx <= mid ) //向左搜索(要有等号)
update ( lson, st, mid, indx, val );
else
update ( rson, mid + 1, end, indx, val ); //向右搜索
Tree[ root ] = Tree[ lson ] + Tree[ rson ];
}
int main () {
int T;
scanf ( "%d", &T );
for ( int i = 1; i <= T; i++ ) {
printf ( "Case %d:\n", i );
int N;
scanf ( "%d", &N );
memset ( Tree, 0, sizeof ( Tree ) );
build ( 1, 1, N );
char instruct[ 8 ];
while ( ~scanf ( "%s", &instruct ) ) {
if ( instruct[ 0 ] == 'E' )
break;
int a, b;
scanf ( "%d%d", &a, &b );
if ( instruct[ 0 ] == 'Q' )
printf ( "%d\n", query ( 1, 1, N, a, b ) );
else if ( instruct[ 0 ] == 'A' )
update ( 1, 1, N, a, b );
else if ( instruct[ 0 ] == 'S' )
update ( 1, 1, N, a, -b );
}
}
return 0;
}