首先master进程在接到信号后,会先重新加载配置文件,然后再启动新的worker进程,并向所有老的worker进程发送信号,告诉他们可以光荣退休了。新的worker在启动后,就开始接收新的请求,而老的worker在收到来自master的信号后,就不再接收新的请求,并且在当前进程中的所有未处理完的请求处理完成后,再退出。
首先,nginx在启动时,会解析配置文件,得到需要监听的端口与ip地址,然后在nginx的master进程里面,先初始化好这个监控的socket(创建socket,设置addr,reuse等选项,绑定到指定的ip地址端口,再listen),然后再fork出多个子进程出来,然后子进程会竞争accept新的连接。此时,客户端就可以向nginx发起连接了。当客户端与服务端通过三次握手建立好一个连接后,nginx的某一个子进程会accept成功,得到这个建立好的连接的socket,然后创建nginx对连接的封装,即ngx_connection_t结构体。接着,设置读写事件处理函数并添加读写事件来与客户端进行数据的交换。最后,nginx或客户端来主动关掉连接,到此,一个连接就寿终正寝了。
nginx通过设置worker_connectons来设置每个进程支持的最大连接数。如果该值大于nofile,那么实际的最大连接数是nofile,nginx会有警告。nginx在实现时,是通过一个连接池来管理的,每个worker进程都有一个独立的连接池,连接池的大小是worker_connections。这里的连接池里面保存的其实不是真实的连接,它只是一个worker_connections大小的一个ngx_connection_t结构的数组。并且,nginx会通过一个链表free_connections来保存所有的空闲ngx_connection_t,每次获取一个连接时,就从空闲连接链表中获取一个,用完后,再放回空闲连接链表里面。
对于HTTP请求本地资源来说,能够支持的最大并发数量是worker_connections * worker_processes,而如果是HTTP作为反向代理来说,最大并发数量应该是worker_connections * worker_processes/2。因为作为反向代理服务器,每个并发会建立与客户端的连接和与后端服务的连接,会占用两个连接。
nginx的处理得先打开accept_mutex选项,此时,只有获得了accept_mutex的进程才会去添加accept事件,也就是说,nginx会控制进程是否添加accept事件。nginx使用一个叫ngx_accept_disabled的变量来控制是否去竞争accept_mutex锁。在第一段代码中,计算ngx_accept_disabled的值,这个值是nginx单进程的所有连接总数的八分之一,减去剩下的空闲连接数量,得到的这个ngx_accept_disabled有一个规律,当剩余连接数小于总连接数的八分之一时,其值才大于0,而且剩余的连接数越小,这个值越大。再看第二段代码,当ngx_accept_disabled大于0时,不会去尝试获取accept_mutex锁,并且将ngx_accept_disabled减1,于是,每次执行到此处时,都会去减1,直到小于0。不去获取accept_mutex锁,就是等于让出获取连接的机会,很显然可以看出,当空余连接越少时,ngx_accept_disable越大,于是让出的机会就越多,这样其它进程获取锁的机会也就越大。不去accept,自己的连接就控制下来了,其它进程的连接池就会得到利用,这样,nginx就控制了多进程间连接的平衡了。
对于nginx来说,一个请求是从ngx_http_init_request开始的,在这个函数中,会设置读事件为ngx_http_process_request_line,也就是说,接下来的网络事件,会由ngx_http_process_request_line来执行。从ngx_http_process_request_line的函数名,我们可以看到,这就是来处理请求行的,正好与之前讲的,处理请求的第一件事就是处理请求行是一致的。通过ngx_http_read_request_header来读取请求数据。然后调用ngx_http_parse_request_line函数来解析请求行。
当请求头读取完成后,就开始进行请求的处理了。nginx通过ngx_http_request_t来保存解析请求与输出响应相关的数据。
在解析完请求行后,nginx会设置读事件的handler为ngx_http_process_request_headers,然后后续的请求就在ngx_http_process_request_headers中进行读取与解析。ngx_http_process_request_headers函数用来读取请求头,跟请求行一样,还是调用ngx_http_read_request_header来读取请求头,调用ngx_http_parse_header_line来解析一行请求头,解析到的请求头会保存到ngx_http_request_t的域headers_in中,headers_in是一个链表结构,保存所有的请求头。而HTTP中有些请求是需要特别处理的,这些请求头与请求处理函数存放在一个映射表里面,即ngx_http_headers_in,在初始化时,会生成一个hash表,当每解析到一个请求头后,就会先在这个hash表中查找,如果有找到,则调用相应的处理函数来处理这个请求头。比如:Host头的处理函数是ngx_http_process_host。
当nginx解析到两个回车换行符时,就表示请求头的结束,此时就会调用ngx_http_process_request来处理请求了。ngx_http_process_request会设置当前的连接的读写事件处理函数为ngx_http_request_handler,然后再调用ngx_http_handler来真正开始处理一个完整的http请求。这里可能比较奇怪,读写事件处理函数都是ngx_http_request_handler,其实在这个函数中,会根据当前事件是读事件还是写事件,分别调用ngx_http_request_t中的read_event_handler或者是write_event_handler。由于此时,我们的请求头已经读取完成了,之前有说过,nginx的做法是先不读取请求body,所以这里面我们设置read_event_handler为ngx_http_block_reading,即不读取数据了。刚才说到,真正开始处理数据,是在ngx_http_handler这个函数里面,这个函数会设置write_event_handler为ngx_http_core_run_phases,并执行ngx_http_core_run_phases函数。ngx_http_core_run_phases这个函数将执行多阶段请求处理,nginx将一个http请求的处理分为多个阶段,那么这个函数就是执行这些阶段来产生数据。因为ngx_http_core_run_phases最后会产生数据,所以我们就很容易理解,为什么设置写事件的处理函数为ngx_http_core_run_phases了。在这里,我简要说明了一下函数的调用逻辑,我们需要明白最终是调用ngx_http_core_run_phases来处理请求,产生的响应头会放在ngx_http_request_t的headers_out中,这一部分内容,我会放在请求处理流程里面去讲。nginx的各种阶段会对请求进行处理,最后会调用filter来过滤数据,对数据进行加工,如truncked传输、gzip压缩等。这里的filter包括header filter与body filter,即对响应头或响应体进行处理。filter是一个链表结构,分别有header filter与body filter,先执行header filter中的所有filter,然后再执行body filter中的所有filter。在header filter中的最后一个filter,即ngx_http_header_filter,这个filter将会遍历所有的响应头,最后需要输出的响应头在一个连续的内存,然后调用ngx_http_write_filter进行输出。ngx_http_write_filter是body filter中的最后一个,所以nginx首先的body信息,在经过一系列的body filter之后,最后也会调用ngx_http_write_filter来进行输出(有图来说明)。
这里要注意的是,nginx会将整个请求头都放在一个buffer里面,这个buffer的大小通过配置项client_header_buffer_size来设置,如果用户的请求头太大,这个buffer装不下,那nginx就会重新分配一个新的更大的buffer来装请求头,这个大buffer可以通过large_client_header_buffers来设置,这个large_buffer这一组buffer,比如配置4 8k,就是表示有四个8k大小的buffer可以用。注意,为了保存请求行或请求头的完整性,一个完整的请求行或请求头,需要放在一个连续的内存里面,所以,一个完整的请求行或请求头,只会保存在一个buffer里面。这样,如果请求行大于一个buffer的大小,就会返回414错误,如果一个请求头大小大于一个buffer大小,就会返回400错误。在了解了这些参数的值,以及nginx实际的做法之后,在应用场景,我们就需要根据实际的需求来调整这些参数,来优化我们的程序了。
http请求是请求应答式的,如果我们能知道每个请求头与响应体的长度,那么我们是可以在一个连接上面执行多个请求的,这就是所谓的长连接,但前提条件是我们先得确定请求头与响应体的长度。对于请求来说,如果当前请求需要有body,如POST请求,那么nginx就需要客户端在请求头中指定content-length来表明body的大小,否则返回400错误。也就是说,请求体的长度是确定的,那么响应体的长度呢?先来看看http协议中关于响应body长度的确定:
从上面,我们可以看到,除了http1.0不带content-length以及http1.1非chunked不带content-length外,body的长度是可知的。此时,当服务端在输出完body之后,会可以考虑使用长连接。能否使用长连接,也是有条件限制的。如果客户端的请求头中的connection为close,则表示客户端需要关掉长连接,如果为keep-alive,则客户端需要打开长连接,如果客户端的请求中没有connection这个头,那么根据协议,如果是http1.0,则默认为close,如果是http1.1,则默认为keep-alive。如果结果为keepalive,那么,nginx在输出完响应体后,会设置当前连接的keepalive属性,然后等待客户端下一次请求。当然,nginx不可能一直等待下去,如果客户端一直不发数据过来,岂不是一直占用这个连接?所以当nginx设置了keepalive等待下一次的请求时,同时也会设置一个最大等待时间,这个时间是通过选项keepalive_timeout来配置的,如果配置为0,则表示关掉keepalive,此时,http版本无论是1.1还是1.0,客户端的connection不管是close还是keepalive,都会强制为close。
如果服务端最后的决定是keepalive打开,那么在响应的http头里面,也会包含有connection头域,其值是”Keep-Alive”,否则就是”Close”。如果connection值为close,那么在nginx响应完数据后,会主动关掉连接。所以,对于请求量比较大的nginx来说,关掉keepalive最后会产生比较多的time-wait状态的socket。一般来说,当客户端的一次访问,需要多次访问同一个server时,打开keepalive的优势非常大,比如图片服务器,通常一个网页会包含很多个图片。打开keepalive也会大量减少time-wait的数量。
如果客户端要提交多个请求,对于keepalive来说,那么第二个请求,必须要等到第一个请求的响应接收完全后,才能发起,这和TCP的停止等待协议是一样的,得到两个响应的时间至少为2*RTT。而对pipeline来说,客户端不必等到第一个请求处理完后,就可以马上发起第二个请求。得到两个响应的时间可能能够达到1*RTT。nginx是直接支持pipeline的,但是,nginx对pipeline中的多个请求的处理却不是并行的,依然是一个请求接一个请求的处理,只是在处理第一个请求的时候,客户端就可以发起第二个请求。这样,nginx利用pipeline减少了处理完一个请求后,等待第二个请求的请求头数据的时间。其实nginx的做法很简单,前面说到,nginx在读取数据时,会将读取的数据放到一个buffer里面,所以,如果nginx在处理完前一个请求后,如果发现buffer里面还有数据,就认为剩下的数据是下一个请求的开始,然后就接下来处理下一个请求,否则就设置keepalive。
lingering_close,字面意思就是延迟关闭,也就是说,当nginx要关闭连接时,并非立即关闭连接,而是先关闭tcp连接的写,再等待一段时间后再关掉连接的读。为什么要这样呢?我们先来看看这样一个场景。nginx在接收客户端的请求时,可能由于客户端或服务端出错了,要立即响应错误信息给客户端,而nginx在响应错误信息后,大分部情况下是需要关闭当前连接。nginx执行完write()系统调用把错误信息发送给客户端,write()系统调用返回成功并不表示数据已经发送到客户端,有可能还在tcp连接的write buffer里。接着如果直接执行close()系统调用关闭tcp连接,内核会首先检查tcp的read buffer里有没有客户端发送过来的数据留在内核态没有被用户态进程读取,如果有则发送给客户端RST报文来关闭tcp连接丢弃write buffer里的数据,如果没有则等待write buffer里的数据发送完毕,然后再经过正常的4次分手报文断开连接。所以,当在某些场景下出现tcp write buffer里的数据在write()系统调用之后到close()系统调用执行之前没有发送完毕,且tcp read buffer里面还有数据没有读,close()系统调用会导致客户端收到RST报文且不会拿到服务端发送过来的错误信息数据。那客户端肯定会想,这服务器好霸道,动不动就reset我的连接,连个错误信息都没有。
在上面这个场景中,我们可以看到,关键点是服务端给客户端发送了RST包,导致自己发送的数据在客户端忽略掉了。所以,解决问题的重点是,让服务端别发RST包。再想想,我们发送RST是因为我们关掉了连接,关掉连接是因为我们不想再处理此连接了,也不会有任何数据产生了。对于全双工的TCP连接来说,我们只需要关掉写就行了,读可以继续进行,我们只需要丢掉读到的任何数据就行了,这样的话,当我们关掉连接后,客户端再发过来的数据,就不会再收到RST了。当然最终我们还是需要关掉这个读端的,所以我们会设置一个超时时间,在这个时间过后,就关掉读,客户端再发送数据来就不管了,作为服务端我会认为,都这么长时间了,发给你的错误信息也应该读到了,再慢就不关我事了,要怪就怪你RP不好了。当然,正常的客户端,在读取到数据后,会关掉连接,此时服务端就会在超时时间内关掉读端。这些正是lingering_close所做的事情。协议栈提供 SO_LINGER 这个选项,它的一种配置情况就是来处理lingering_close的情况的,不过nginx是自己实现的lingering_close。lingering_close存在的意义就是来读取剩下的客户端发来的数据,所以nginx会有一个读超时时间,通过lingering_timeout选项来设置,如果在lingering_timeout时间内还没有收到数据,则直接关掉连接。nginx还支持设置一个总的读取时间,通过lingering_time来设置,这个时间也就是nginx在关闭写之后,保留socket的时间,客户端需要在这个时间内发送完所有的数据,否则nginx在这个时间过后,会直接关掉连接。当然,nginx是支持配置是否打开lingering_close选项的,通过lingering_close选项来配置。 那么,我们在实际应用中,是否应该打开lingering_close呢?这个就没有固定的推荐值了,如Maxim Dounin所说,lingering_close的主要作用是保持更好的客户端兼容性,但是却需要消耗更多的额外资源(比如连接会一直占着)。
另外,若在nginx.conf配置了pid文件存放路径,则该文件存放的就是Nginx
1. kill –HUP 主进程号或进程号文件路径, 或者/usr/local/nginx/sbin/nginx -s reload
2. 检查修改过的nginx.conf配置文件是否正确,命令如下:nginx -t -c /usr/local/nginx/conf/nginx.conf
或者/usr/local/nginx/sbin/nginx -t
8. Nginx常用的内建变量
9. Nginx常用指令(包括标准nginx指令和第三方模块提供的配置指令)
location /test {
set__uri $name $arg_name; #两个参数,只会对第二个参数的编码序列进行解码
set__uri $class $arg_class;
echo "name: $name";
echo "class: $class";
}
10. 几个重要实例:
server {
listen 8080;
location /foo {
set $a hello;
echo_exec /bar; #也可用rewrite ^ /bar;进行内部跳转
}
location /bar {
echo "a = [$a]";
}
}
$ curl localhost:8080/foo
a = [hello]
分析:这里我们在 location /foo 中,使用第三方模块 ngx_echo 提供的 echo_exec 配置指令,发起到 location /bar 的“内部跳转”。所谓“内部跳转”,就是在处理请求的过程中,于服务器内部,从一个 location 跳转到另一个 location 的过程。这不同于利用 HTTP 状态码301 和 302 所进行的“外部跳转”,因为后者是由 HTTP 客户端配合进行跳转的,而且在客户端,用户可以通过浏览器地址栏这样的界面,看到请求的 URL 地址发生了变化。内部跳转和Bourne Shell(或 Bash)中的 exec 命令很像,都是“有去无回”。另一个相近的例子是 C 语言中的 goto 语句。
既然是内部跳转,当前正在处理的请求就还是原来那个,只是当前的 location 发生了变化,所以还是原来的那一套 Nginx 变量的容器副本。对应到上例,如果我们请求的是 /foo 这个接口,那么整个工作流程是这样的:先在 location /foo 中通过 set 指令将 $a 变量的值赋为字符串 hello,然后通过 echo_exec 指令发起内部跳转,又进入到 location /bar 中,再输出 $a 变量的值。因为 $a 还是原来的 $a,所以我们可以期望得到 hello 这行输出。测试证实了这一点:
结论:Nginx变量值容器的生命期是与当前正在处理的请求绑定的,而与location无关。
location /main {
set $var main;
echo_location /foo; #发起子请求
echo_location /bar; #发起子请求
echo "main: $var";
}
location /foo {
set $var foo;
echo "foo: $var";
}
location /bar {
set $var bar;
echo "bar: $var";
}
$ curl 'http://localhost:8080/main'
foo: foo
bar: bar
main: main
分析:在这个例子中,我们分别在 /main,/foo 和 /bar 这三个 location 配置块中为同一名字的变量,$var,分别设置了不同的值并予以输出。特别地,我们在 /main 接口中,故意在调用过 /foo 和 /bar 这两个“子请求”之后,再输出它自己的 $var 变量的值。请求 /main 接口的结果是这样的:
备注:但是有一些Nginx模块发起的“子请求”却会自动共享其“父请求”的变量值容器,比如第三方模块ngx_auth_request(auth_request指令)
Nginx 处理请求的过程一共划分为 11 个阶段,按照执行顺序依次是 post-read、server-rewrite、find-config、rewrite、post-rewrite、preaccess、access、post-access、try-files、content 以及 log.
接收完请求头之后的第一个阶段,它位于uri重写之前,实际上很少有模块会注册在该阶段,默认的情况下,该阶段被跳过;Nginx读取并解析完请求头之后就立即开始运行。例如ngx_realip就在post-read阶段注册了处理程序,它的功能是迫使Nginx认为当前请求的来源地址是指定的某一个请求头的值。
server级别的uri重写阶段,也就是该阶段执行处于server块内,location块外的重写指令,前面的章节已经说明在读取请求头的过程中nginx会根据host及端口找到对应的虚拟主机配置;当ngx_rewrite模块的set配置指令直接书写在server配置块中时,基本上都是运行在server-rewrite阶段。
寻找location配置阶段,该阶段使用重写之后的uri来查找对应的location,值得注意的是该阶段可能会被执行多次,因为也可能有location级别的重写指令;这个阶段并不支持Nginx模块注册处理程序,而是由Nginx核心来完成当前请求与location配置块之间的配对工作。
location级别的uri重写阶段,该阶段执行location基本的重写指令,也可能会被执行多次;当ngx_rewrite模块的指令用于location块时,便是运行在这个rewrite阶段。另外,ngx_set_misc(设置md5、encode_base64)模块的指令,还有ngx_lua模块的set_by_lua指令和rewrite_by_lua指令也在此阶段。
location级别重写的后一阶段,用来检查上阶段是否有uri重写,并根据结果跳转到合适的阶段;
标准模块ngx_limit_req和ngx_limit_zone就运行在此阶段,前者可以控制请求的访问频度,而后者可以限制访问的并发度。
标准模块ngx_access、第三方模块ngx_auth_request以及第三方模块ngx_lua的access_by_lua指令就运行在这个阶段,配置指令多是执行访问控制性质的任务,比如检查用户的访问权限,检查用户的来源IP是否合法。
访问权限控制阶段,比如基于ip黑白名单的权限控制,基于用户名密码的权限控制等。
主要用于配合access阶段实现标准ngx_http_core模块提供的配置指令satisfy的功能。
satisfy all(与关系)
satisfy any(或关系)
专门用于实现标准配置指令try_files的功能。如果前N-1个参数所对应的文件系统对象都不存在,try-files阶段就会立即发起“内部跳转”到最后一个参数(即第N个参数)所指定的URI。
Nginx的content阶段是所有请求处理阶段中最为重要的一个,因为运行在这个阶段的配置指令都肩负着生成内容并输出HTTP响应的使命。
记录日志。
server {
listen 8080;
set_real_ip_from 127.0.0.1; #set_real_ip_from指令规定了来源地址的改写操作只对那些来自127.0.0.1的请求生效
real_ip_header X-My-IP;
location /test {
set $addr $remote_addr;
echo "from: $addr";
}
}
这里的配置是让Nginx把那些来自127.0.0.1的所有请求的来源地址,都改写为请求头X-My-IP所指定的值。同时该例使用了标准内建变量$remote_addr来输出当前请求的来源地址,以确认是否被成功改写。
首先在本地请求一下这个/test接口:
$ curl -H 'X-My-IP: 1.2.3.4' localhost:8080/test
from: 1.2.3.4
这里使用了 curl 工具的 -H 选项指定了额外的 HTTP 请求头 X-My-IP: 1.2.3.4. 从输出可以看到, $remote_addr 变量的值确实在 rewrite 阶段就已经成为了 X-My-IP 请求头中指定的值,即 1.2.3.4. 那么 Nginx 究竟是在什么时候改写了当前请求的来源地址呢?答案是:在 post-read 阶段。由于 rewrite 阶段的运行远在 post-read 阶段之后,所以当在 location 配置块中通过 set 配置指令读取 $remote_addr 内建变量时,读出的来源地址已经是经过 post-read 阶段篡改过的。
如果在请求上例中的 /test 接口时没有指定 X-My-IP 请求头,或者提供的 X-My-IP 请求头的值不是合法的 IP 地址,那么 Nginx 就不会对来源地址进行改写,例如:(此外,如果从另外一台机器访问了这个/test接口,那么即使指定了合法的X-My-IP请求头,也不会触发Nginx对来源地址进行改写)
$ curl localhost:8080/test
from: 127.0.0.1
$ curl -H 'X-My-IP: abc' localhost:8080/test
from: 127.0.0.1
当ngx_rewrite模块的配置指令直接书写在server配置块中时,基本上都是运行在server-rewrite阶段。例子如下:
server {
listen 8080;
location /test {
set $b "$a, world";
echo $b;
}
set $a hello;
}
这里,配置语句 set $a hello 直接写在了 server 配置块中,因此它就运行在 server-rewrite 阶段。而 server-rewrite 阶段要早于 rewrite 阶段运行,因此写在 location 配置块中的语句 set $b "$a, world" 便晚于外面的 set $a hello 语句运行。该例的测试结果证明了这一点:
$ curl localhost:8080/test
hello, world
由于 server-rewrite 阶段位于 post-read 阶段之后,所以 server 配置块中的 set 指令也就总是运行在 ngx_realip 模块改写请求的来源地址之后。来看下面这个例子:
server {
listen 8080;
set $addr $remote_addr;
set_real_ip_from 127.0.0.1;
real_ip_header X-Real-IP;
location /test {
echo "from: $addr";
}
}
请求 /test 接口的结果如下:
$ curl -H 'X-Real-IP: 1.2.3.4' localhost:8080/test
from: 1.2.3.4
在这个例子中,虽然 set 指令写在了 ngx_realip 的配置指令之前,但仍然晚于 ngx_realip 模块执行。所以 $addr 变量在 server-rewrite 阶段被 set 指令赋值时,从 $remote_addr 变量读出的来源地址已经是经过改写过的了。
这个阶段并不支持Nginx模块注册处理程序,而是由核心来完成当前请求与location配置块之间的配对工作。因此,对于运行在find-config阶段之前的post-read和server-rewrite阶段来说,只有server配置块以及更外层作用域中的配置指令才会起作用。这就是为什么只有写在server 配置块中的 ngx_rewrite 模块的指令才会运行在 server-rewrite 阶段,这也是为什么前面所有例子中的 ngx_realip 模块的指令也都特意写在了 server 配置块中,以确保其注册在post-read 阶段的处理程序能够生效。
由于Nginx已经在find-config阶段完成了当前请求与location的配对,所以从rewrite阶段开始,location配置块中的指令便可以产生作用。当ngx_rewrite模块的指令用于location块中时,便是运行在这个rewrite阶段。另外,ngx_set_misc模块的指令也是如此,还有ngx_lua模块的set_by_lua指令和rewrite_by_lua指令也不例外。
post-rewrite阶段也不支持Nginx模块注册处理程序,而是由Nginx核心完成rewrite阶段所要求的内部跳转操作。示例如下:
server {
listen 8080;
location /foo {
set $a hello;
rewrite ^ /bar;
}
location /bar {
echo "a = [$a]";
}
}
这里在 location /foo 中通过 rewrite 指令把当前请求的 URI 无条件地改写为 /bar,同时发起一个“内部跳转”,最终跳进了 location /bar 中。这里比较有趣的地方是“内部跳转”的工作原理。“内部跳转”本质上其实就是把当前的请求处理阶段强行倒退到 find-config 阶段,以便重新进行请求 URI 与 location 配置块的配对。比如上例中,运行在 rewrite 阶段的 rewrite 指令就让当前请求的处理阶段倒退回了 find-config 阶段。由于此时当前请求的 URI 已经被rewrite 指令修改为了 /bar,所以这一次换成了 location /bar 与当前请求相关联,然后再接着从 rewrite 阶段往下执行。
不过这里更有趣的地方是,倒退回 find-config 阶段的动作并不是发生在 rewrite 阶段,而是发生在后面的 post-rewrite 阶段。上例中的 rewrite 指令只是简单地指示 Nginx 有必要在 post-rewrite 阶段发起“内部跳转”。这个设计对于 Nginx 初学者来说,或许显得有些古怪:“为什么不直接在 rewrite 指令执行时立即进行跳转呢?”答案其实很简单,那就是为了在最初匹配的 location 块中支持多次反复地改写 URI,例如:
location /foo {
rewrite ^ /bar;
rewrite ^ /baz;
echo foo;
}
location /bar {
echo bar;
}
location /baz {
echo baz;
}
这里在 location /foo 中连续把当前请求的 URI 改写了两遍:第一遍先无条件地改写为 /bar,第二遍再无条件地改写为 /baz. 而这两条 rewrite 语句只会最终导致 post-rewrite 阶段发生一次“内部跳转”操作,从而不至于在第一次改写 URI 时就直接跳离了当前的 location 而导致后面的 rewrite 语句没有机会执行。请求 /foo 接口的结果证实了这一点:
$ curl localhost:8080/foo
baz
从输出结果可以看到,上例确实成功地从 /foo 一步跳到了 /baz 中。如果启用 Nginx “调试日志”的话,还可以从 find-config 阶段生成的 location 块的匹配信息中进一步证实这一点:
$ grep 'using config' logs/error.log
[debug] 89449#0: *1 using configuration "/foo"
[debug] 89449#0: *1 using configuration "/baz"
我们看到,对于该次请求,Nginx 一共只匹配过 /foo 和 /baz 这两个 location,从而只发生过一次“内部跳转”。
当然,如果在 server 配置块中直接使用 rewrite 配置指令对请求 URI 进行改写,则不会涉及“内部跳转”,因为此时 URI 改写发生在 server-rewrite 阶段,早于执行 location 配对的find-config 阶段。比如下面这个例子:
server {
listen 8080;
rewrite ^/foo /bar;
location /foo {
echo foo;
}
location /bar {
echo bar;
}
}
这里,我们在 server-rewrite 阶段就把那些以 /foo 起始的 URI 改写为 /bar,而此时请求并没有和任何 location 相关联,所以 Nginx 正常往下运行 find-config 阶段,完成最终的location 匹配。如果我们请求上例中的 /foo 接口,那么 location /foo 根本就没有机会匹配,因为在第一次(也是唯一的一次)运行 find-config 阶段时,当前请求的 URI 已经被改写为/bar,从而只会匹配 location /bar. 实际请求的输出正是如此:
$ curl localhost:8080/foo
bar
Nginx “调试日志”可以再一次佐证我们的结论:
$ grep 'using config' logs/error.log
[debug] 92693#0: *1 using configuration "/bar"
可以看到,Nginx 总共只进行过一次 location 匹配,并无“内部跳转”发生。
标准模块ngx_limit_req和ngx_limit_zone运行在此阶段,前者可以控制请求的访问频度,而后者可以限制访问的并发度。
标准模块ngx_access、第三方模块ngx_auth_request以及第三方模块ngx_lua的access_by_lua指令运行在这个阶段。
post-access阶段也不支持Nginx模块注册处理程序,主要用于配合access阶段实现标准ngx_http_core模块提供的配置指令satisfy的功能。
对于多个 Nginx 模块注册在 access 阶段的处理程序, satisfy 配置指令可以用于控制它们彼此之间的协作方式。比如模块 A 和 B 都在 access 阶段注册了与访问控制相关的处理程序,那就有两种协作方式,一是模块 A 和模块 B 都得通过验证才算通过,二是模块 A 和模块 B 只要其中任一个通过验证就算通过。第一种协作方式称为 all 方式(或者说“与关系”),第二种方式则被称为 any 方式(或者说“或关系”)。默认情况下,Nginx 使用的是 all 方式。下面是一个例子:
location /test {
satisfy all;
deny all;
access_by_lua 'ngx.exit(ngx.OK)';
echo something important;
}
这里,我们在 /test 接口中同时配置了 ngx_access 模块和 ngx_lua 模块,这样 access 阶段就由这两个模块一起来做检验工作。其中,语句 deny all 会让 ngx_access 模块的处理程序总是拒绝当前请求,而语句 access_by_lua 'ngx.exit(ngx.OK)' 则总是允许访问。当我们通过satisfy 指令配置了 all 方式时,就需要 access 阶段的所有模块都通过验证,但不幸的是,这里ngx_access 模块总是会拒绝访问,所以整个请求就会被拒:
$ curl localhost:8080/test
(报错信息略,浏览器会默认成Forbidden。)
细心的读者会在 Nginx 错误日志文件中看到类似下面这一行的出错信息:
[error] 6549#0: *1 access forbidden by rule
然而,如果我们把上例中的 satisfy all 语句更改为 satisfy any,
location /test {
satisfy any;
deny all;
access_by_lua 'ngx.exit(ngx.OK)';
echo something important;
}
结果则会完全不同:
$ curl localhost:8080/test
something important
即请求反而最终通过了验证。这是因为在 any 方式下,access 阶段只要有一个模块通过了验证,就会认为请求整体通过了验证,而在上例中, ngx_lua 模块的 access_by_lua 语句总是会通过验证的。
在配置了 satisfy any 的情况下,只有当 access 阶段的所有模块的处理程序都拒绝访问时,整个请求才会被拒,例如:
location /test {
satisfy any;
deny all;
access_by_lua 'ngx.exit(ngx.HTTP_FORBIDDEN)';
echo something important;
}
此时访问 /test 接口才会得到 403 Forbidden 错误页。这里,post-access 阶段参与了 access阶段各模块处理程序的“或关系”的实现。
值得一提的是,上面这几个的例子需要 ngx_lua 0.5.0rc19 或以上版本;之前的版本是不能和satisfy any 配置语句一起工作的。
这个阶段专门用于实现标准配置指令try_files的功能,并不支持Nginx模块注册处理程序。由于try_files 指令在许多 FastCGI 应用的配置中都有用到,所以我们不妨在这里简单介绍一下。
try_files 指令接受两个以上任意数量的参数,每个参数都指定了一个 URI. 这里假设配置了 N 个参数,则 Nginx 会在 try-files 阶段,依次把前 N-1 个参数映射为文件系统上的对象(文件或者目录),然后检查这些对象是否存在。一旦 Nginx 发现某个文件系统对象存在,就会在 try-files 阶段把当前请求的 URI 改写为该对象所对应的参数 URI(但不会包含末尾的斜杠字符,也不会发生 “内部跳转”)。如果前 N-1 个参数所对应的文件系统对象都不存在,try-files 阶段就会立即发起“内部跳转”到最后一个参数(即第 N 个参数)所指定的 URI.
前面在 (六) 和 (七) 中已经看到静态资源服务模块会把当前请求的 URI 映射到文件系统,通过 root 配置指令所指定的“文档根目录”进行映射。例如,当“文档根目录”是/var/www/ 的时候,请求 URI /foo/bar 会被映射为文件 /var/www/foo/bar,而请求 URI /foo/baz/ 则会被映射为目录 /var/www/foo/baz/. 注意这里是如何通过 URI 末尾的斜杠字符是否存在来区分“目录”和“文件”的。我们正在讨论的 try_files 配置指令使用同样的规则来完成其各个参数 URI 到文件系统对象的映射。
不妨来看下面这个例子:
root /var/www/;
location /test {
try_files /foo /bar/ /baz;
echo "uri: $uri";
}
location /foo {
echo foo;
}
location /bar/ {
echo bar;
}
location /baz {
echo baz;
}
这里通过 root 指令把“文档根目录”配置为 /var/www/,如果你系统中的 /var/www/ 路径下存放有重要数据,则可以把它替换为其他任意路径,但此路径对运行 Nginx worker 进程的系统帐号至少有可读权限。我们在 location /test 中使用了 try_files 配置指令,并提供了三个参数,/foo、/bar/ 和 /baz. 根据前面对 try_files 指令的介绍,我们可以知道,它会在 try-files阶段依次检查前两个参数 /foo 和 /bar/ 所对应的文件系统对象是否存在。
不妨先来做一组实验。假设现在 /var/www/ 路径下是空的,则第一个参数 /foo 映射成的文件/var/www/foo 是不存在的;同样,对于第二个参数 /bar/ 所映射成的目录 /var/www/bar/ 也是不存在的。于是此时 Nginx 会在 try-files 阶段发起到最后一个参数所指定的 URI(即/baz)的“内部跳转”。实际的请求结果证实了这一点:
$ curl localhost:8080/test
baz
显然,该请求最终和 location /baz 绑定在一起,执行了输出 baz 字符串的工作。上例中定义的 location /foo 和 location /bar/ 完全不会参与这里的运行过程,因为对于 try_files 的前 N-1 个参数,Nginx 只会检查文件系统,而不会去执行 URI 与 location 之间的匹配。
对于上面这个请求,Nginx 会产生类似下面这样的“调试日志”:
$ grep trying logs/error.log
[debug] 3869#0: *1 trying to use file: "/foo" "/var/www/foo"
[debug] 3869#0: *1 trying to use dir: "/bar" "/var/www/bar"
[debug] 3869#0: *1 trying to use file: "/baz" "/var/www/baz"
通过这些信息可以清楚地看到 try-files 阶段发生的事情:Nginx 依次检查了文件/var/www/foo 和目录 /var/www/bar,末了又处理了最后一个参数 /baz. 这里最后一条“调试信息”容易产生误解,会让人误以为 Nginx 也把最后一个参数 /baz 给映射成了文件系统对象进行检查,事实并非如此。当 try_files 指令处理到它的最后一个参数时,总是直接执行“内部跳转”,而不论其对应的文件系统对象是否存在。
接下来再做一组实验:在 /var/www/ 下创建一个名为 foo 的文件,其内容为 hello world(注意你需要有 /var/www/ 目录下的写权限):
$ echo 'hello world' > /var/www/foo
然后再请求 /test 接口:
$ curl localhost:8080/test
uri: /foo
这里发生了什么?我们来看, try_files 指令的第一个参数 /foo 可以映射为文件/var/www/foo,而 Nginx 在 try-files 阶段发现此文件确实存在,于是立即把当前请求的 URI改写为这个参数的值,即 /foo,并且不再继续检查后面的参数,而直接运行后面的请求处理阶段。
上面这个请求在 try-files 阶段所产生的“调试日志”如下:
$ grep trying logs/error.log
[debug] 4132#0: *1 trying to use file: "/foo" "/var/www/foo"
显然,在 try-files 阶段,Nginx 确实只检查和处理了 /foo 这一个参数,而后面的参数都被“短路”掉了。
类似地,假设我们删除刚才创建的 /var/www/foo 文件,而在 /var/www/ 下创建一个名为 bar的子目录:
$ mkdir /var/www/bar
则请求 /test 的结果也是类似的:
$ curl localhost:8080/test
uri: /bar
在这种情况下,Nginx 在 try-files 阶段发现第一个参数 /foo 对应的文件不存在,就会转向检查第二个参数对应的文件系统对象(在这里便是目录 /var/www/bar/)。由于此目录存在,Nginx 就会把当前请求的 URI 改写为第二个参数的值,即 /bar(注意,原始参数值是/bar/,但 try_files 会自动去除末尾的斜杠字符)。
这一组实验所产生的“调试日志”如下:
$ grep trying logs/error.log
[debug] 4223#0: *1 trying to use file: "/foo" "/var/www/foo"
[debug] 4223#0: *1 trying to use dir: "/bar" "/var/www/bar"
我们看到, try_files 指令在这里只检查和处理了它的前两个参数。
通过前面这几组实验不难看到, try_files 指令本质上只是有条件地改写当前请求的 URI,而这里说的“条件”其实就是文件系统上的对象是否存在。当“条件”都不满足时,它就会无条件地发起一个指定的“内部跳转”。当然,除了无条件地发起“内部跳转”之外, try_files 指令还支持直接返回指定状态码的 HTTP 错误页,例如:
try_files /foo /bar/ =404;
这行配置是说,当 /foo 和 /bar/ 参数所对应的文件系统对象都不存在时,就直接返回 404 Not Found 错误页。注意这里它是如何使用等号字符前缀来标识 HTTP 状态码的。
指令 |
所处处理阶段 |
使用范围 |
解释 |
init_by_lua init_by_lua_file |
Loading-config |
http |
nginx Master进程加载配置时执行; 通常用于初始化全局配置/预加载Lua模块
|
init_worker_by_lua init_worker_by_lua_file |
starting-worker |
http |
每个Nginx Worker进程启动时调用的计时器,如果Master进程不允许则只会在init_by_lua之后调用; 通常用于定时拉取配置/数据,或者后端服务的健康检查
|
set_by_lua set_by_lua_file |
rewrite |
server, server if, location, location if |
设置nginx变量,可以实现复杂的赋值逻辑;此处是阻塞的,Lua代码要做到非常快; |
rewrite_by_lua rewrite_by_lua_file |
rewrite tail |
http, server, location, location if
|
rewrite阶段处理,可以实现复杂的转发/重定向逻辑;
|
access_by_lua access_by_lua_file |
access tail |
http, server, location, location if
|
请求访问阶段处理,用于访问控制 |
content_by_lua content_by_lua_file |
content |
location, location if
|
内容处理器,接收请求处理并输出响应 |
header_filter_by_lua header_filter_by_lua_file |
output-header-filter |
http, server, location, location if
|
设置header和cookie |
body_filter_by_lua bode_filter_by_lua_file |
output-body-filter |
http, server, location, location if
|
对响应数据进行过滤,比如截断、替换。 |
log_by_lua log_by_lua_file |
Log |
http, server, location, location if
|
log阶段处理,比如记录访问量/统计平均响应时间 |
timer |
|
|
|
init_by_lua:
在nginx重新加载配置文件时,运行里面lua脚本,常用于全局变量的申请。例如lua_shared_dict共享内存的申请,只有当nginx重起后,共享内存数据才清空,这常用于统计。
set_by_lua:
设置一个变量,常用与计算一个逻辑,然后返回结果。该阶段不能运行Output API、Control API、Subrequest API、Cosocket API
rewrite_by_lua:
在access阶段前运行,主要用于rewrite
access_by_lua:
主要用于访问控制,能收集到大部分变量,类似status需要在log阶段才有。这条指令运行于nginx access阶段的末尾,因此总是在 allow 和 deny 这样的指令之后运行,虽然它们同属 access 阶段。
content_by_lua:
阶段是所有请求处理阶段中最为重要的一个,运行在这个阶段的配置指令一般都肩负着生成内容(content)并输出HTTP响应。
header_filter_by_lua:
一般只用于设置Cookie和Headers等该阶段不能运行Output API、Control API、Subrequest API、Cosocket API
body_filter_by_lua:
一般会在一次请求中被调用多次, 因为这是实现基于 HTTP 1.1 chunked 编码的所谓“流式输出”的。该阶段不能运行Output API、Control API、Subrequest API、Cosocket API
log_by_lua:
该阶段总是运行在请求结束的时候,用于请求的后续操作,如在共享内存中进行统计数据,如果要高精确的数据统计,应该使用body_filter_by_lua。该阶段不能运行Output API、Control API、Subrequest API、Cosocket API
timer:
ngx_http_access_module模块自己的多条配置指令之间是按顺序执行的,直到遇到第一条满足条件的指令就不再执行后续的allow和deny指令。
location /test {
echo hello;
content_by_lua 'ngx.say("world")';
}
$ curl 'http://localhost:8080/test'
World
分析:绝大不多数Nginx模块在向content阶段注册配置指令时,本质上是在当前的location配置块中注册所谓的“内容处理程序”(content handler)。每一个location只能有一个“内容处理程序”,因此,当在location中同时使用多个模块的content阶段指令时,只有其中一个模块能成功注册和运行这个location的“内容处理程序”。
实际运行结果表明,写在后面的 content_by_lua 指令(属于ngx_lua模块)反而胜出了,而echo 指令(属于ngx_echo模块)则完全没有运行。具体哪一个模块的指令会胜出是不确定的,例如把上例中的 echo 语句和 content_by_lua 语句交换顺序,则输出就会变成 hello,即ngx_echo 模块胜出。所以我们应当避免在同一个 location 中使用多个模块的 content 阶段指令。
upstream resinserver{
server 10.0.0.10:7777;
server 10.0.0.11:8888;
hash $request_uri;
hash_method crc32;
}
书籍--深入理解nginx:模块开发与架构解析