Python调用阿里云的智能语音交互接口实现录音转文字

质量声明:原创文章,内容质量问题请评论吐槽。如对您产生干扰,可私信删除。
主要参考:阿里云官方接口文档


摘要: Python调用阿里云的智能语音交互接口,依靠对象存储服务(OSS)上传音频,实现录音文件识别,输出为txt文本。支持单轨/双轨的wav、mp3格式,最大支持文件512MB,最大录音时长2个小时。


文章目录

  • 处理音频
    • 安装 pydub
    • 安装 ffmpeg
    • 音频处理程序
  • 上传至OSS
  • 录音识别程序
  • 识别结果


处理音频

由于阿里、百度、腾讯、讯飞等语音处理平台都对语音参数有特定要求,所以我们需要预先处理音频。好在要求都基本一致,主要是采样率必须是16k Hz或8k Hz,采样位数16bit,单/双通道,wav或mp3。这些通过调用pydub包即可实现转换。

安装 pydub

pip3 install pydub

安装 ffmpeg

  • 下载地址:https://ffmpeg.zeranoe.com/builds/
  • 本文版本:ffmpeg-20190826-0821bc4-win64-static.zip
  • 下载好不需要安装,解压至某一文件夹,配置好环境变量(如:D:\Program Files\ffmpeg-20190826-0821bc4-win64-static\bin)即可
  • 验证安装:命令行输入ffmpeg -version

音频处理程序

  • 实现时长剪辑、采样率&采样位数转换、声道选择、格式转换功能,支持WAV、MP3、ogg、flv格式。
from pydub import AudioSegment


def wavSample(from_path, to_path, frame_rate=16000, channels=1, startMin=0, endMin=None):
	# 根据文件的类型选择导入方法
    audio = AudioSegment.from_wav(from_path)  
    # mp3_version = AudioSegment.from_mp3("never_gonna_give_you_up.mp3")
    # ogg_version = AudioSegment.from_ogg("never_gonna_give_you_up.ogg")
    # flv_version = AudioSegment.from_flv("never_gonna_give_you_up.flv")
    startTime = startMin * 60 * 1000  # 单位ms
    endTime = endMin * 60 * 1000 + 1 if endMin else None  # 单位ms
    audio = audio[startTime:endTime]
    mono = audio.set_frame_rate(frame_rate).set_channels(channels)  # 设置声道和采样率
    mono.export(to_path, format='wav', codec='pcm_s16le')  # codec此参数本意是设定16bits pcm编码器


if __name__ == '__main__':
    wavSample("sample.WAV", "sample_new.WAV")

上传至OSS

由于各大智能语音识别服务的平台,都仅支持基于HTTP可访问的URL地址,不支持提交本地文件,所以需要上传至网络。我用的是阿里云的OSS存储,使用方法参考官方文档:阿里云对象存储 OSS 快速入门。主要浏览如何开通OSS,如何上传录音文件并开放读权限即可。上传完成,需要获得访问链接,格式如:https://xxxx.oss-cn-beijing.aliyuncs.com/xxxx.WAV


录音识别程序

开通服务: 参考官方文档,浏览如何开通智能语音交互即可,需要获得

  • accessKey Id
  • accessKey Secret
  • appKey

调用代码: 改动自官方Demo,新增识别结果解析,组合后存储为txt文件

# -*- coding: utf8 -*-
import json
import time
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.request import CommonRequest


def fileTrans(akId, akSecret, appKey, fileLink):
    # 地域ID,常量内容,请勿改变
    REGION_ID = "cn-shanghai"
    PRODUCT = "nls-filetrans"
    DOMAIN = "filetrans.cn-shanghai.aliyuncs.com"
    API_VERSION = "2018-08-17"
    POST_REQUEST_ACTION = "SubmitTask"
    GET_REQUEST_ACTION = "GetTaskResult"
    # 请求参数key
    KEY_APP_KEY = "appkey"
    KEY_FILE_LINK = "file_link"
    KEY_VERSION = "version"
    KEY_ENABLE_WORDS = "enable_words"
    # 是否开启智能分轨
    KEY_AUTO_SPLIT = "auto_split"
    # 响应参数key
    KEY_TASK = "Task"
    KEY_TASK_ID = "TaskId"
    KEY_STATUS_TEXT = "StatusText"
    KEY_RESULT = "Result"
    # 状态值
    STATUS_SUCCESS = "SUCCESS"
    STATUS_RUNNING = "RUNNING"
    STATUS_QUEUEING = "QUEUEING"

    # 创建AcsClient实例
    client = AcsClient(akId, akSecret, REGION_ID)

    # 提交录音文件识别请求
    postRequest = CommonRequest()
    postRequest.set_domain(DOMAIN)
    postRequest.set_version(API_VERSION)
    postRequest.set_product(PRODUCT)
    postRequest.set_action_name(POST_REQUEST_ACTION)
    postRequest.set_method('POST')

    # 新接入请使用4.0版本,已接入(默认2.0)如需维持现状,请注释掉该参数设置
    # 设置是否输出词信息,默认为false,开启时需要设置version为4.0
    task = {KEY_APP_KEY: appKey, KEY_FILE_LINK: fileLink, KEY_VERSION: "4.0", KEY_ENABLE_WORDS: False}
    # 开启智能分轨,如果开启智能分轨 task中设置KEY_AUTO_SPLIT : True
    # task = {KEY_APP_KEY : appKey, KEY_FILE_LINK : fileLink, KEY_VERSION : "4.0", KEY_ENABLE_WORDS : False, KEY_AUTO_SPLIT : True}
    task = json.dumps(task)

    postRequest.add_body_params(KEY_TASK, task)

    taskId = ""
    try:
        postResponse = client.do_action_with_exception(postRequest)
        postResponse = json.loads(postResponse)
        statusText = postResponse[KEY_STATUS_TEXT]
        if statusText == STATUS_SUCCESS:
            print("录音文件识别请求成功响应!")
            taskId = postResponse[KEY_TASK_ID]
        else:
            print("录音文件识别请求失败!")
            return
    except ServerException as e:
        print(e)
    except ClientException as e:
        print(e)

    # 创建CommonRequest,设置任务ID
    getRequest = CommonRequest()
    getRequest.set_domain(DOMAIN)
    getRequest.set_version(API_VERSION)
    getRequest.set_product(PRODUCT)
    getRequest.set_action_name(GET_REQUEST_ACTION)
    getRequest.set_method('GET')
    getRequest.add_query_param(KEY_TASK_ID, taskId)

    # 提交录音文件识别结果查询请求
    # 以轮询的方式进行识别结果的查询,直到服务端返回的状态描述符为"SUCCESS"、"SUCCESS_WITH_NO_VALID_FRAGMENT",
    # 或者为错误描述,则结束轮询。
    statusText = ""
    while True:
        try:
            getResponse = client.do_action_with_exception(getRequest)
            getResponse = json.loads(getResponse)
            statusText = getResponse[KEY_STATUS_TEXT]
            if statusText == STATUS_RUNNING or statusText == STATUS_QUEUEING:
                # 继续轮询
                time.sleep(30)
            else:
                # 退出轮询
                break
        except ServerException as e:
            print(e)
        except ClientException as e:
            print(e)
    
    # 结果解析与保存        
    if statusText == STATUS_SUCCESS:
        texts = ""
        result = getResponse["Result"]
        sentences = result["Sentences"]
        maxlength = 30  # 按长度分段
        for i, sentence in enumerate(sentences):
            index = i % (maxlength + 1)
            if index == maxlength:
                # 以追加方式存入文件
                with open("recognition.txt", "a+") as f:
                    f.write(texts + "\r\n\r\n")
                texts = ""
            text = sentence["Text"]
            texts += text
        print("录音文件识别成功!\n")
    else:
        print("录音文件识别失败!")


def main():
	# 配置阿里云接口
    accessKeyId = "填入开通服务的accessKey Id"
    accessKeySecret = "填入开通服务的accessKey Secret "
    appKey = "填入开通服务的appKey"
    # 输入录音url
    fileLink = "填入上传至OSS的录音的url"
    # 执行录音文件识别,识别成功后将输出recognition.txt文件
    fileTrans(accessKeyId, accessKeySecret, appKey, fileLink)


if __name__ == '__main__':
    main()

识别结果

  1. 写博客的时候,发现阿里云OSS已经欠费停止了,我手里只有一个讲座的识别结果,但内容涉密,只能打码…/捂脸
  2. 标准普通话的识别效果挺好,带口音的就很勉强了,毕竟有的人耳也听不清
    Python调用阿里云的智能语音交互接口实现录音转文字_第1张图片

你可能感兴趣的:(python)