你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM)的经理,公司使用更加先进的机械设备生产先进的机器。原来的那一台生产机器已经坏了,所以你要去为公司买一台新的生产机器。你的任务是在转型期内尽可能得到更大的收益。在这段时间内,你要买卖机器,并且当机器被ACM公司拥有的时候,操控这些机器以获取利润。因为空间的限制,ACM公司在任何时候都只能最多拥有一台机器。
在转型期内,有若干台可能卖出的机器。作为先进机器的专家,对于每台机器Mi,你已经知道了其价格Pi和可以买入的日期Di。注意,如果不在第Di天买入机器Mi,那么别的人也会买走这一台机器,也就是说,以后你将没有机会购买这台机器了。如果ACM的钱低于一台机器的价格,那么你显然不可能买到这一台机器。
如果你在第Di天买入了机器Mi,那么ACM公司可以从第(Di)+1天开始使用这一台机器。每使用这台机器一天,就可以为公司创造出Gi美元的收益。
你可以决定要在买入之后的某一天,以一定的折扣价卖出这一台机器。收购市场对于每一台机器,都有一个折扣价Ri。你不能在卖出的那一天使用机器,但是你可以在卖出的那一天再买入一台新的。
在转型期结束后,ACM公司会卖掉当前所拥有的机器。你的任务就是最大化转型期间ACM公司可以得到的收入。
输入包含若干组测试用例。每一组测试用例的第一行有3个正整数N,C和D。N是将会卖出的机器的台数(N<=10^5),C是在转型期开始时公司拥有的美元数量(C<=10^9),D是转型期持续的天数(D<=10^9)。
之后的N行每一行描述了一台机器的情况。每一行有4个正整数Di,Pi,Ri和Gi,分别表示这台机器卖出的时间,购买这台机器需要的美元数量,卖出这台机器的折扣价和使用这台机器可以得到的利润。这些数字满足1<=Di<=D,1<=Ri
最后一组测试用例后面的一行由3个0组成,表示输入数据。
Output
对于每一组测试用例,输出测试用例的编号,之后给出ACM公司在第D+1天结束后可以得到的最大数量的美元。
Sample Input
6 10 20
6 12 1 3
1 9 1 2
3 2 1 2
8 20 5 4
4 11 7 4
2 10 9 1
0 0 0
Sample Output
Case 1: 44
HINT
Source
[ Submit][ Status][ Discuss]
做此题前先写bzoj1492,,NOI2007Cash,这两题差不多
令fi:第i天卖出上一台机器的最大收益
fi = max{fk - Pk + (Di - Dk - 1)*Gk + Rk}
整理得,fk - (Dk+1)*Gk - Pk + Rk = -Di*Gk + fi
记yk = fk - (Dk+1)*Gk - Pk + Rk,xk = Gk
则原式可化为yk = -Di*xk + fi,要让fi最大,截距最大即可
然后就是套用1492的思路了
CDQ,,合并凸包==
听说此题直接叉积会炸。。于是直接写斜率了,记得特判INF
#include
#include
#include
#include
#include
#include
#include
#include