Discrete mathematics_Homework_5_23_Pro_3

Part 1

Set P P is a well-formed formulas in propositional logic, involving T,F,s and {¬} { ¬ → ∧ ∨ ↔ }

Basis Step:

T,F,sP T , F , s ∈ P , where s s is a propositional variable, are well-formed formulas.

Recursive Step:

If formulas A,BP A , B ∈ P , we have
(¬A)P,(AB)P,(AB)P,(AB)P,(AB)P ( ¬ A ) ∈ P , ( A ∧ B ) ∈ P , ( A ∨ B ) ∈ P , ( A → B ) ∈ P , ( A ↔ B ) ∈ P

Part 2

f(x):PN f ( x ) : P → N
f(x)=s f ( x ) = s , s s is the number of connectives for x,xP x , x ∈ P

Part 3

For variables p,q p , q , we have

p p q q ¬(pq) ¬ ( p ∧ q ) ¬p¬q ¬ p ∨ ¬ q
1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1
p p q q ¬(pq) ¬ ( p ∨ q ) ¬p¬q ¬ p ∧ ¬ q
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 1

p,qP p , q ∈ P , from the recursive definition, we know A,BP ∀ A , B ∈ P , we holds De Morgan low.

Part 4

Firstly, p=¬p ∗ p = ¬ p

p p q q ¬p ¬ p ¬q ¬ q
1 1 0 0
1 0 0 1
0 1 1 0
0 0 1 1

From the tabel above, we know that If p=q p = q , p=q ∗ p = ∗ q
p,qP p , q ∈ P , from the recursive definition, we know A,BP ∀ A , B ∈ P , we holds duality principle.
IfA=B,A=B I f A = B , ∗ A = ∗ B

你可能感兴趣的:(Homework)