POJ - 1328 Radar Installation (贪心,区间选点问题)

Radar Installation

Time Limit:  1000MS Memory Limit:  10000K
Total Submissions:  51131 Accepted:  11481

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 

 

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1

Source

Beijing 2002

解题思路:

题意为,在一个坐标系中,x中代表海岸,x轴以上有n个点,代表着n个岛屿,在x轴上建雷达,一直雷达的覆盖范围为半径为d的圆,求在x轴上最少建多少个雷达,才能把全部的岛屿覆盖起来,如果不能覆盖,输出-1.

区间选点问题为  给定 n个闭区间,求在里面选择最少的点使得每个区间里面都包含至少一个点(一个点可以在不同的区间)。   比如下图。

贪心策略为  把n个区间先按照右端点从小到大进行排序,如果端点相同,按照左端点从大到小进行排序。首先选择第一个区间的右端点。如果以后的区间左端点大于当前选择的端点值时,使得当前选择的端点值改变为这个以后的区间的右端点值。 比如 当前temp是 23  遇到一个区间左端点 25 右端点 27,让temp=27.(选择了一个新点)

回到本题上来,要求建造最短的雷达。  首先对n个岛屿进行画圆,与x轴有两个交点,这样每个岛屿都对应了一个区间(只要雷达建在这个区间内,该岛屿就一定能被覆盖到)。圆的方程 (x-a)²+(y-b)²=r²  ,在本题中,b始终是0,因为在x轴上。判断无解的条件为r

参考:

http://blog.csdn.net/dgq8211/article/details/7534776

代码:

#include 
#include 
#include 
#include 
using namespace std;
const int maxn=1010;

struct N
{
	double l,r;
}interval[maxn];

bool cmp(N a,N b)//排序
{
	if(a.rb.l)
			return true;
		return false;
	}
	return false;
}


int main()
{
	double x,y;
	int n,d;
	int c=1;
	while(cin>>n>>d&&(n||d))
	{
		bool ok=1;
		for(int i=1;i<=n;i++)
		{
			cin>>x>>y;
			double temp=d*d-y*y;
			if(temp<0||d<0)//这样的话就得判断d是否小于0,如果 temp= d-y 这样写的话,就不用判断d是否小于0,坑啊!!
				ok=0;
			else if(ok)
			{
				interval[i].l=x-sqrt((double)d*d - (double)y*y);
				interval[i].r=x+sqrt((double)d*d - (double)y*y);
			}
		}
		if(!ok)
		{
			cout<<"Case "<temp)
			{
				cnt++;
				temp=interval[i].l;
			}
		}*/   //一开始写成了这个,不对  比如区间 [1,2]  [4,8]  [6,9],正确的应该是选择2,8这两个点,而上面这个则选择了 2,4 6,显然不对
		cout<<"Case "< 
  


你可能感兴趣的:(贪心)