- 数据结构 第6章 图(一轮习题总结)
ITS_Oaij
408:数据机构(习题知识点)数据结构算法c语言
数据结构第6章图6.1图的基本概念6.2图的存储及基本操作6.3图的遍历6.4图的应用6.1图的基本概念(2411)6.2图的存储及基本操作(112131516)6.3图的遍历(23516)6.4图的应用(14568910111314192425283334)6.1图的基本概念T2一个有个顶点和n条边的图,一定是有环的。T4无向图的连通分量=极大连通子图图的遍历:每个结点只访问一次;若为非连通图,
- 邓俊辉数据结构与算法学习笔记-第五章
xiaodidadada
数据结构与算法
文章目录树aa1树a2应用a3有根树a4有序树a5路径a6连通图无环图a7深度层次b在计算机中表示b1树的表示b2父节点b3孩子节点b4父亲孩子表示法b5长子兄弟表示法c二叉树c1二叉树概述c2真二叉树c3描述多叉树d二叉树d1BinNode类d2BinNode接口d3BinTree类d4高度更新d5节点插入e相关算法e1-1先序遍历转化策略e1-2遍历规则e1-3递归实现e1-4迭代实现e1-5
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 代码随想录算法训练营day64 | 98. 所有可达路径
sunflowers11
代码随想录二刷算法
图论理论基础1、图的种类整体上一般分为有向图和无向图。加权有向图,就是图中边是有权值的,加权无向图也是同理。2、度无向图中有几条边连接该节点,该节点就有几度在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。3、连通性在图中表示节点的连通情况,我们称之为连通性连通图和强连通图在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,
- Day44 | 图论理论基础 98. 所有可达路径
086小包字
图论算法数据结构java
语言Java图论理论基础整体上一般分为有向图和无向图有向图就是有箭头的,无向图就是没有方向的。有几条连线就是有几个度。在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。在无向图中,任何两个节点都是可以到达的,我们称之为连通图。在有向图中,任何两个节点是可以相互到达的,我们称之为强连通图。98.所有可达路径98.所有可达路径题目给定一个有n个节点的有向无环图,
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- 图论
whynotybb
基于DFS求无向连通图的环对于每一个连通分量,如果无环则只能是树,即:边数=结点数-1只要有一个满足边数>结点数-1原图就有环,环的个数为:边的个数-顶点个数+1;publicMap>getRings(){//用来记录结点访问状态的数组,0----还未访问;1-----正在进行访问2------------已访问完visit=newint[nVerts];//记录当前结点已经访问过的结点,并记录了
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 数据结构与算法--PTA第六章习题
Java之弟
数据结构与算法算法
数据结构与算法--PTA第六章习题答案一、判断无向连通图至少有一个顶点的度为1。F用一维数组G[]存储有4个顶点的无向图如下:TG[]={0,1,0,1,1,0,0,0,1,0}则顶点2和顶点0之间是有边的。若图G有环,则G不存在拓扑排序序列。T无向连通图所有顶点的度之和为偶数。T无向连通图边数一定大于顶点个数减1。F用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。F用邻接矩
- Kruskal算法
青年之家
algorithms算法
Kruskal算法问题描述算法简析代码问题描述有一张nnn个顶点、mmm条边的无向图,且是连通图,求最小生成树。算法简析KruskalKruskalKruskal是一种求最小生成树的算法。设该图为G=(V,E)G=(V,E)G=(V,E)。最小生成树即所求为GT=(VT,ET)G_T=(V_T,E_T)GT=(VT,ET),因为图是连通的,所以最小生成树会覆盖所有的顶点,即V==VTV==V_TV
- 系统架构21 - 统一建模语言UML(下)
银龙丶裁决
软考系统架构系统架构uml
UML图UML中的图分类作用视图用例视图逻辑视图进程视图实现视图部署视图UML中的图“图”是一组元素的图形表示,大多数情况下把图画成顶点(代表事物)和弧(代表关系)的连通图。为了对系统进行可视化,可以从不同的角度画图,这样图是对系统的投影。分类UML2.0提供了13种图:类图、对象图、用例图、序列图、通信图、状态图、活动图、构件图、部署图、组合结构图、包图、交互概览图和计时图。其中,序列图、通信图
- 【图论】基环树
Texcavator
图论图论
基环树其实并不是树,是指有n个点n条边的图,我们知道n个点n-1条边的连通图是树,再加一条边就会形成一个环,所以基环树中一定有一个环,长下面这样:由基环树可以引申出基环内向树和基环外向树基环内向树如下,特点是每个点的出度为1基环外向树如下,特点是每个点的入度为1下面放点题,做到相关题目随时更新基环树+组合数学CF1454ENumberofSimplePaths先记录环上的点,每个环上的点引出去的子
- 22:算法--指定源点下的最小生成树
raindayinrain
2.1.数据结构与算法图最小生成树算法
指定源点下的最小生成树性质算法输入:图G指定的源点输入限制:图G须为无向连通图算法目标:求取一个权重之和最小的边的集合,通过此边集合,G中任意两个节点均可以相互到达。接口设计templateclassMinGenerateTree{public:classNode;typenametypedefDataStruct::GraphStruct::GraphInnerGraph;typenametyp
- Java数据结构——连通性算法+prim算法+kruskal算法
NoBug.己千之
Java数据结构java
文章目录一、图的连通性(一)、定义(二)、方法(三)、Java代码1.图的连通性检验2.源码3.输出样例二、最小生成树(一)、定义(二)、求法(三)、图与网(四)、普里姆算法1.定义2.Java代码3.输出样例(五)、克鲁斯卡尔算法1.定义2.Java代码3.输出样例一、图的连通性(一)、定义请读一遍:对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问
- 图的遍历算法——DFS、BFS原理及实现
W24-
数据结构数据结构队列dfs算法
文章目录图的遍历定义如何判别某些顶点被访问过深度优先搜索(Depth-First-Search)深度优先搜索的递归实现深度优先搜索的非递归实现广度优先搜索(Breadth-First-Search)广度优先搜索实现图的遍历定义图的遍历(搜索):从图的某一顶点出发,对图中所有顶点访问一次且仅访问一次。访问:抽象操作,可以是对节点进行的各种处理。连通图与非连通图都可以。但是图结构具有复杂性,不像线性表
- 图论——连通性
Albert.Jw
搜索图论
割点:1.无向图2.删去这个点及其所连边后,图不再联通点双连通图:1.无向图2.没有割点(删去任意一个点图仍联通)点双联通分量:无向图G中所有子图G’如果G’1.是点双联通子图2.不是其他点双联通子图的真子集,则G’是G的极大点双联通子图,也称点双联通分量。桥(割边):1.无向图2.删此边(不删其连着的点),剩下的图不再联通边双连通图:1.无向图2.删任意一边,剩下的图仍联通边双联通分量:无向图G
- 图(数据结构期末复习3)
一只程序媛li
数据结构复习数据结构
图的分类:有向图,无向图连通图,非连通图连通图分为强连通(有向并且形成一个环)和弱连通(有向并且连成一串但是不是一个环)图的存储用邻接矩阵存储有向图或者无向图#includeusingnamespacestd;#defineINFINITY32767//权值最大值#defineMVNUM100//最多顶点个数#defineERROR0typedefcharVertexType;//顶点的类型typ
- 数据结构--最小生成树
嘉月末
c/c++数据结构图论
最小生成树在含有n个顶点的连通网中选择n-1条边,构成一个极小连通图,并使这个连通图的边上的权值之和最小,这就是最小生成树。构造下图的最小生成树Prim(普利姆)算法从图中的任意节点出发,选择子树中节点与图中其余节点之间的最小权重边来生成子树,直到得到一棵图G的生成树为止。(以点为基础开始)时间复杂度O(n^2)普利姆算法构造最小生成树的过程Kruskal(克鲁斯卡尔)算法先构造一个只含n个顶点的
- 牛客练习赛113
温存~
算法
A.小红的基环树A-小红的基环树_牛客练习赛113(nowcoder.com)题目:定义基环树为n个节点、n条边的、没有自环和重边的无向连通图。定义一个图的直径是任意两点最短路的最大值。小红想知道,n个节点构成的所有基环树中,最小的直径是多少?思路:由题意观察可以知道,当n等于3时,最小的直径就是1,而当n大于等于4时,直径等于2.代码:#includeusingnamespacestd;intm
- 并查集与图
风影66666
面试c++动态规划贪心算法数据结构广度优先
并查集与图一、并查集概念实现原理代码实现查找根节点合并两颗树判断是否是同一棵树树的数量二、图的基本概念定义分类完全图顶点的度连通图三、图的存储结构分类邻接表邻接表的结构代码实现邻接矩阵代码实现四、图的遍历方式广度优先深度优先五、最小生成树概念Kruskal算法原理代码实现Prim算法原理代码实现六、单源最短路径概念Dijkstra原理代码实现缺陷BellmanFord原理代码实现七、多源最短路径概
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- Tarjan 算法超级详解
键盘上的艺术家w
#算法-图论Tarjan算法超级详解
首先我们引入定义:1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。2、如果在有向图G中,有一条有向道路,则v称为u可达的,或者说,从u可达v。3、如果有向图G的任意两个顶点都互相可达,则称图G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。4、如果有向图G不是强连通图,
- 力扣刷题系列——BFS和DFS
今天也要学习哦
力扣刷题系列java算法
BFS与DFS相关算法题目录BFS与DFS相关算法题BFS1.二进制矩阵中的最短路径2.完全平方数3.单词接龙DFS1.岛屿的最大面积2.岛屿数量3.岛屿的周长4.朋友圈5.被围绕的区域6.太平洋大西洋水流问题BFS广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历算法这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采
- floyd算法求最短路径
菜鸡小陈
算法c++
给定一个n个点m条边构成的无重边和自环的无向连通图。点的编号为1∼n。请问:从1到n的最短距离。去掉k条边后,从1到n的最短距离。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含三个整数n,m,k。接下来m行,每行包含三个整数x,y,z,表示点x和点y之间存在一条长度为z的边。最后一行包含k个空格隔开的整数,表示去掉的边的编号。所有边按输入顺序从1到m编号。输出格式每组数据输出占
- 【数据结构】图 常见题型汇总
_mika_
【数据结构笔记】数据结构
数据结构图定义无向图的连通分量是指无向图中的极大连通子图。图的遍历是指从图中顶点出发,每个顶点只能被访问一次,如果图不是连通则从某一顶点出发无法访问到其他全部结点。无向连通图的所有顶点度之和为偶数邻接矩阵行对应入度,列对应出度,顶点的度为对应入度+出度。习题题型11.一个有28条边的非连通无向图至少有()个结点假设一种情况一个完全图+一个结点设结点个数为n+1有n(n-1)/2=28求出n为7所以
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR