详谈pandas中agg函数和apply函数的区别

在利用python进行数据分析 这本书中其实没有明确表明这两个函数的却别,而是说apply更一般化.

其实在这本书的第九章‘数组及运算和转换'点到了两者的一点点区别:agg是用来聚合运算的,所谓的聚合当然是合成的成分比较大些,这一节开头就点到了:聚合只不过是分组运算的其中一种而已。它是数据转换的一个特例,也就是说,它接受能够将一维数组简化为标量值的函数。

当然这两个函数都是作用在groupby对象上的,也就是分完组的对象上的,分完组之后针对某一组,如果值是一维数组,在利用完特定的函数之后,能做到简化的话,agg就能调用,反之,如果比如自定义的函数是排序,或者像是书中278页所定义的top这一类的函数,当然是agg所不能解决的,这时候用apply就可以解决。因为他更一般化,不存在什么简化,什么一维数组,什么标量值。

以上纯属个人见解,不喜勿喷。

这篇详谈pandas中agg函数和apply函数的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(详谈pandas中agg函数和apply函数的区别)