一. 代码
- Hbase In Action(HBase实战)和Hbase:The Definitive Guide(HBase权威指南)两本书中,有很多入门级的代码,可以选择自己感兴趣的check out。地址分别为https://github.com/HBaseinaction https://github.com/larsgeorge/hbase-book。
- 在Win7下运行Hbase与MapReduce集成章节的代码时,出现了错误。比喻这个代码https://github.com/larsgeorge/hbase-book/blob/master/ch07/src/main/java/mapreduce/ParseJson.java
二. 错误
Exception in thread "main" java.lang.IllegalArgumentException: Pathname /D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-client-0.96.1.1-hadoop2.jar from hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-client-0.96.1.1-hadoop2.jar is not a valid DFS filename. at org.apache.hadoop.hdfs.DistributedFileSystem.getPathName(DistributedFileSystem.java:184) at org.apache.hadoop.hdfs.DistributedFileSystem.access$000(DistributedFileSystem.java:92) at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1106) at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1102) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1102) at org.apache.hadoop.mapreduce.filecache.ClientDistributedCacheManager.getFileStatus(ClientDistributedCacheManager.java:288) at org.apache.hadoop.mapreduce.filecache.ClientDistributedCacheManager.getFileStatus(ClientDistributedCacheManager.java:224) at org.apache.hadoop.mapreduce.filecache.ClientDistributedCacheManager.determineTimestamps(ClientDistributedCacheManager.java:93) at org.apache.hadoop.mapreduce.filecache.ClientDistributedCacheManager.determineTimestampsAndCacheVisibilities(ClientDistributedCacheManager.java:57) at org.apache.hadoop.mapreduce.JobSubmitter.copyAndConfigureFiles(JobSubmitter.java:264) at org.apache.hadoop.mapreduce.JobSubmitter.copyAndConfigureFiles(JobSubmitter.java:300) at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:387) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1268) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1265) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:396) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491) at org.apache.hadoop.mapreduce.Job.submit(Job.java:1265) at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1286) at com.jyz.study.hadoop.hbase.mapreduce.AnalyzeData.main(AnalyzeData.java:249)
三. 跟踪代码
org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil
public static void addHBaseDependencyJars(Configuration conf) throws IOException { addDependencyJars(conf, // explicitly pull a class from each module org.apache.hadoop.hbase.HConstants.class, // hbase-common org.apache.hadoop.hbase.protobuf.generated.ClientProtos.class, // hbase-protocol org.apache.hadoop.hbase.client.Put.class, // hbase-client org.apache.hadoop.hbase.CompatibilityFactory.class, // hbase-hadoop-compat org.apache.hadoop.hbase.mapreduce.TableMapper.class, // hbase-server // pull necessary dependencies org.apache.zookeeper.ZooKeeper.class, org.jboss.netty.channel.ChannelFactory.class, com.google.protobuf.Message.class, com.google.common.collect.Lists.class, org.cloudera.htrace.Trace.class); } public static void addDependencyJars(Configuration conf, Class>... classes) throws IOException { Path path = findOrCreateJar(clazz, localFs, packagedClasses); conf.set("tmpjars", StringUtils.arrayToString(jars.toArray(new String[jars.size()]))); }
此时tmpjars例如
file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-client-0.96.1.1-hadoop2.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-server-0.96.1.1-hadoop2.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/htrace-core-2.01.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-common-0.96.1.1-hadoop2.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/guava-12.0.1.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hadoop-common-2.2.0.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-protocol-0.96.1.1-hadoop2.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-hadoop-compat-0.96.1.1-hadoop2.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/netty-3.6.6.Final.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/protobuf-java-2.5.0.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hadoop-mapreduce-client-core-2.2.0.jar,file:/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/zookeeper-3.4.5.jar
JobSubmitter的copyAndConfigureFiles方法
String libjars = conf.get("tmpjars"); if (libjars != null) { FileSystem.mkdirs(jtFs, libjarsDir, mapredSysPerms); String[] libjarsArr = libjars.split(","); for (String tmpjars: libjarsArr) { Path tmp = new Path(tmpjars); Path newPath = copyRemoteFiles(libjarsDir, tmp, conf, replication); DistributedCache.addFileToClassPath( new Path(newPath.toUri().getPath()), conf); } }
copyRemoteFiles会copies 这些jar to the jobtracker filesystem and returns the path where itwas copied to。
当集群环境运行时,就会返回
[hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hbase-client-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hbase-server-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/htrace-core-2.01.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hbase-common-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/guava-12.0.1.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hadoop-common-2.2.0.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hbase-protocol-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hbase-hadoop-compat-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/netty-3.6.6.Final.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/protobuf-java-2.5.0.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/hadoop-mapreduce-client-core-2.2.0.jar, hdfs://192.168.1.200:9000/tmp/hadoop-yarn/staging/root/.staging/job_1396339976222_0035/libjars/zookeeper-3.4.5.jar]
如果是本地运行时,则返回
[hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-client-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-server-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/htrace-core-2.01.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-common-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/guava-12.0.1.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hadoop-common-2.2.0.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-protocol-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hbase-hadoop-compat-0.96.1.1-hadoop2.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/netty-3.6.6.Final.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/protobuf-java-2.5.0.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/hadoop-mapreduce-client-core-2.2.0.jar, hdfs://192.168.1.200:9000/D:/GoogleCode/platform-components/trunk/SourceCode/study-hadoop/lib/zookeeper-3.4.5.jar]
后面会使用Hadoop文件系统检查这两批URL。问题就在这里,它没有区分是本地Window文件系统还是集群Hadoop文件系统,应该区分检查。所以提交到集群运行没问题,本地运行出现上述问题。找个时间去Hadoop Jira上create a issue。
四. 代码能跑下去的解决方法
在TableMapReduceUtil里initTableMapperJob,initTableReducerJob都有大量的重构方法,其中可以指定参数
* @param addDependencyJars upload HBase jars and jars for any of the configured * job classes via the distributed cache (tmpjars).
也正是因为addDependencyJars默认为true,才触发了上面的错误
if (addDependencyJars) { addDependencyJars(job); }
所以我们可以将其设置为false。修改https://github.com/larsgeorge/hbase-book/blob/master/ch07/src/main/java/mapreduce/ParseJson.java 代码为
TableMapReduceUtil.initTableMapperJob(input, scan, ParseMapper.class, // co ParseJson-3-SetMap Setup map phase details using the utility method. ImmutableBytesWritable.class, Put.class, job, false); TableMapReduceUtil.initTableReducerJob(output, // co ParseJson-4-SetReduce Configure an identity reducer to store the parsed data. IdentityTableReducer.class, job, null, null, null, null, false);
运行正常,查看结果,testtable data:json的数据划分为 testtable data:column1 data:column2...符合期望。