C++遗传算法类文件实例分析

本文所述为C++实现的遗传算法的类文件实例。一般来说遗传算法可以解决许多问题,希望本文所述的C++遗传算法类文件,可帮助你解决更多问题,并且代码中为了便于读者更好的理解,而加入了丰富的注释内容,是新手学习遗传算法不可多得的参考代码。

具体代码如下所示:

#include "stdafx.h"
#include
#include
#include
#include
#include//把日期和时间转换为字符串
using namespace std;
//Parametes setting           
#define POPSIZE 200   //population size 
#define MAXGENS 1000  //max number of generation 
#define NVARS 2     //no of problem variables 
#define PXOVER  0.75 //probalility of crossover 
#define PMUTATION 0.15 //probalility of mutation 
#define TRUE 1
#define FALSE 0
#define LBOUND 0    
#define UBOUND 12   
#define STOP 0.001
int generation;     //current generation no
int cur_best;      //best individual
double diff;      
FILE *galog;      //an output file
struct genotype
{
   double gene[NVARS];   //a string of variables基因变量
   double upper[NVARS];  //individual's variables upper bound 基因变量取值上确界
   double lower[NVARS];  //individual's batiables lower bound 基因变量取值下确界
   double fitness;     //individual's fitness个体适应值
   double rfitness;    //relative fitness个体适应值占种群适应值比例
   double cfitness;    //curmulation fitness个体适应值的累加比例
 };
struct genotype population[POPSIZE+1]; 
//population 当前种群 population[POPSIZE]用于存放个体最优值并假设最优个体能存活下去
//在某些遗传算法中最优值个体并不一定能够存活下去
struct genotype newpopulation[POPSIZE+1]; //new population replaces the old generation 子种群
 /*Declaration of procedures used by the gentic algorithm*/
 void initialize(void);          //初始化函数
 double randval(double,double);      //随机函数
 double funtion(double x1,double x2);  //目标函数
 void evaluate(void);          //评价函数
 void keep_the_best(void);        //保留最优个体
 void elitist(void);            //当前种群与子代种群最优值比较
 void select(void);
 void crossover(void);          //基因重组函数
 void swap(double *,double *);      //交换函数
 void mutate(void);            //基因突变函数
 double report(void);          //数据记录函数
void initialize(void)
 {
  int i,j;
   for(i=0;iworst)
     {
       worst=population[i].fitness;
      worst_mem=i;
    }  
   }
  if(best<=population[POPSIZE].fitness)//赋值
   {
    for(i=0;i=population[j].cfitness&&p1)
  {
     if(NVARS==2)
      point=1;
    else
      point=(rand()%(NVARS-1))+1;//两个都重组吗?
    for(i=0;i=STOP);
   //fprintf(galog,"\n\n Simulation completed\n");
   //fprintf(galog,"\n Best member:\n");
   printf("\nBest member:\ngeneration:%d\n",generation);
   for(i=0;i 
 

感兴趣的读者可以动手测试一下代码,希望对大家学习C++算法能有所帮助。

你可能感兴趣的:(C++遗传算法类文件实例分析)