C#数据结构之单链表(LinkList)实例详解

本文实例讲述了C#数据结构之单链表(LinkList)实现方法。分享给大家供大家参考,具体如下:

这里我们来看下“单链表(LinkList)”。在上一篇《C#数据结构之顺序表(SeqList)实例详解》的最后,我们指出了:顺序表要求开辟一组连续的内存空间,而且插入/删除元素时,为了保证元素的顺序性,必须对后面的元素进行移动。如果你的应用中需要频繁对元素进行插入/删除,那么开销会很大。

而链表结构正好相反,先来看下结构:

每个元素至少具有二个属性:data和next。data用来存放数据,而next用来指出它后面的元素是谁(有点“指针”的意思)。

链表中的元素,通常也称为节点Node,下面是泛型版本的Node.cs

namespace 线性表
{
  public class Node
  {
    private T data;
    private Node next;
    public Node(T val, Node p) 
    {
      data = val;
      next = p;
    }
    public Node(Node p) 
    {
      next = p;
    }
    public Node(T val) 
    {
      data = val;
      next = null;
    }
    public Node() 
    {
      data = default(T);
      next = null;
    }
    public T Data 
    {
      get { return data; }
      set { data = value; }
    }
    public Node Next 
    {
      get { return next; }
      set { next = value; }
    }
  }
}

链表在存储上并不要求所有元素按顺序存储,因为用节点的next就能找到下一个节点,这好象一根“用珠子串成的链子”,要找到其中的某一颗珠子,只要从第一颗节点(通常称为Head节点)开始,不断根据next指向找到下一个,直到找到需要的节点为止。

链表中需要有一个Head节点做为开始,这跟顺序表有所不同,下面是单链表的实现:

using System;
using System.Text;
namespace 线性表
{
  public class LinkList : IListDS
  {
    private Node head;
    public Node Head
    {
      get { return head; }
      set { head = value; }
    }
    public LinkList()
    {
      head = null;
    }
    /// 
    /// 类索引器
    /// 
    /// 
    /// 
    public T this[int index] 
    {
      get
      {
        return this.GetItemAt(index);
      }
    }
    /// 
    /// 返回单链表的长度
    /// 
    /// 
    public int Count()
    {
      Node p = head;
      int len = 0;
      while (p != null)
      {
        len++;
        p = p.Next;
      }
      return len;
    }
    /// 
    /// 清空
    /// 
    public void Clear()
    {
      head = null;
    }
    /// 
    /// 是否为空
    /// 
    /// 
    public bool IsEmpty()
    {
      return head == null;
    }
    /// 
    /// 在最后附加元素
    /// 
    /// 
    public void Append(T item)
    {
      Node d = new Node(item);
      Node n = new Node();
      if (head == null)
      {
        head = d;
        return;
      }
      n = head;
      while (n.Next != null)
      {
        n = n.Next;
      }
      n.Next = d;
    }
    //前插
    public void InsertBefore(T item, int i)
    {
      if (IsEmpty() || i < 0)
      {
        Console.WriteLine("List is empty or Position is error!");
        return;
      }
      //在最开头插入
      if (i == 0)
      {
        Node q = new Node(item);
        q.Next = Head;//把"头"改成第二个元素
        head = q;//把自己设置为"头"
        return;
      }
      Node n = head;
      Node d = new Node();
      int j = 0;
      //找到位置i的前一个元素d
      while (n.Next != null && j < i)
      {
        d = n;
        n = n.Next;
        j++;
      }
      if (n.Next == null) //说明是在最后节点插入(即追加)
      {
        Node q = new Node(item);
        n.Next = q;
        q.Next = null;
      }
      else
      {
        if (j == i)
        {
          Node q = new Node(item);
          d.Next = q;
          q.Next = n;
        }
      }
    }
    /// 
    /// 在位置i后插入元素item
    /// 
    /// 
    /// 
    public void InsertAfter(T item, int i)
    {
      if (IsEmpty() || i < 0)
      {
        Console.WriteLine("List is empty or Position is error!");
        return;
      }
      if (i == 0)
      {
        Node q = new Node(item);
        q.Next = head.Next;
        head.Next = q;
        return;
      }
      Node p = head;
      int j = 0;
      while (p != null && j < i)
      {
        p = p.Next;
        j++;
      }
      if (j == i)
      {
        Node q = new Node(item);
        q.Next = p.Next;
        p.Next = q;
      }
      else
      {
        Console.WriteLine("Position is error!");
      }
    }
    /// 
    /// 删除位置i的元素
    /// 
    /// 
    /// 
    public T RemoveAt(int i)
    {
      if (IsEmpty() || i < 0)
      {
        Console.WriteLine("Link is empty or Position is error!");
        return default(T);
      }
      Node q = new Node();
      if (i == 0)
      {
        q = head;
        head = head.Next;
        return q.Data;
      }
      Node p = head;
      int j = 0;
      while (p.Next != null && j < i)
      {
        j++;
        q = p;
        p = p.Next;
      }
      if (j == i)
      {
        q.Next = p.Next;
        return p.Data;
      }
      else
      {
        Console.WriteLine("The node is not exist!");
        return default(T);
      }
    }
    /// 
    /// 获取指定位置的元素
    /// 
    /// 
    /// 
    public T GetItemAt(int i)
    {
      if (IsEmpty())
      {
        Console.WriteLine("List is empty!");
        return default(T);
      }
      Node p = new Node();
      p = head;
      if (i == 0) 
      { 
        return p.Data; 
      }
      int j = 0;
      while (p.Next != null && j < i)
      {
        j++;
        p = p.Next;
      }
      if (j == i)
      {
        return p.Data;
      }
      else
      {
        Console.WriteLine("The node is not exist!");
        return default(T);
      }
    }
    //按元素值查找索引
    public int IndexOf(T value)
    {
      if (IsEmpty())
      {
        Console.WriteLine("List is Empty!");
        return -1;
      }
      Node p = new Node();
      p = head;
      int i = 0;
      while (!p.Data.Equals(value) && p.Next != null)
      {
        p = p.Next;
        i++;
      }
      return i;
    }
    /// 
    /// 元素反转
    /// 
    public void Reverse()
    {
      LinkList result = new LinkList();
      Node t = this.head;
      result.Head = new Node(t.Data);
      t = t.Next;
      //(把当前链接的元素从head开始遍历,逐个插入到另一个空链表中,这样得到的新链表正好元素顺序跟原链表是相反的)
      while (t!=null)
      {        
        result.InsertBefore(t.Data, 0);
        t = t.Next;
      }
      this.head = result.head;//将原链表直接挂到"反转后的链表"上
      result = null;//显式清空原链表的引用,以便让GC能直接回收
    }
    public override string ToString()
    {
      StringBuilder sb = new StringBuilder();
      Node n = this.head;
      sb.Append(n.Data.ToString() + ",");
      while (n.Next != null)
      {
        sb.Append(n.Next.Data.ToString() + ",");
        n = n.Next;
      }
      return sb.ToString().TrimEnd(',');
    }
  }
}

下面是单链表插入和删除的算法图解:

C#数据结构之单链表(LinkList)实例详解_第1张图片

可以看到:链表在元素插入/删除时,无需对后面的元素进行移动,只需要修改自身以及相邻节点的next指向即可,所以插入/删除元素的开销要比顺序表小得多。但是也应该注意到,其它操作比如:查找元素,反转倒置链表等,有可能需要遍历整个链表中的所有元素。

测试代码片断:

Console.WriteLine("-------------------------------------");
Console.WriteLine("单链表测试开始...");
LinkList link = new LinkList();
link.Head = new Node("x");
link.InsertBefore("w", 0);
link.InsertBefore("v", 0);
link.Append("y");
link.InsertBefore("z", link.Count());
Console.WriteLine(link.Count());//5
Console.WriteLine(link.ToString());//v,w,x,y,z
Console.WriteLine(link[1]);//w
Console.WriteLine(link[0]);//v
Console.WriteLine(link[4]);//z
Console.WriteLine(link.IndexOf("z"));//4
Console.WriteLine(link.RemoveAt(2));//x
Console.WriteLine(link.ToString());//v,w,y,z
link.InsertBefore("x", 2);
Console.WriteLine(link.ToString());//v,w,x,y,z
Console.WriteLine(link.GetItemAt(2));//x
link.Reverse();
Console.WriteLine(link.ToString());//z,y,x,w,v
link.InsertAfter("1", 0);
link.InsertAfter("2", 1);
link.InsertAfter("6", 5);
link.InsertAfter("8", 7);
link.InsertAfter("A", 10);//Position is error!
Console.WriteLine(link.ToString()); //z,1,2,y,x,w,6,v,8

至于具体在实际应用中应该选用顺序表 or 链表,主要是看:对于元素插入/删除的频繁程度以及对于内存分配的苛刻程度。 如果不要求一开始就分配一组连续的内存区域,可以根据元素的增加而自动加大内存的使用量,或者插入/删除的次数很多,那么建议使用链表,反之用顺序表。

最后指出:可以给节点再添加一个prev元素,用于指出前一个节点是谁,即同时有next和prev二个指向,这种改进后的链表称为“双向链表”,它有助于某些情况下减少遍历循环的次数,本文中的这种仅有一个next指向的链表,称为“单链表”。

希望本文所述对大家C#程序设计有所帮助。

你可能感兴趣的:(C#数据结构之单链表(LinkList)实例详解)