- 基于区块链技术的超级账本(Hyperledger) - 从理论到实战
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- AI大模型引领医疗变革:十大创新应用场景塑造智慧医疗新时代
和老莫一起学AI
人工智能自动化数据库学习语言模型大模型
前言在人工智能技术的迅猛发展中,AI大模型以其无与伦比的数据处理能力和深度学习能力,正逐步成为医疗健康领域变革的引领者。本文旨在深入探讨AI大模型在医疗领域的十大创新应用场景,展示其如何显著提升医疗服务效率、赋能临床决策,并推动整个行业向智能化转型。一、智能化诊疗:精准辅助,提升诊断效率AI大模型凭借对海量医疗数据的深度分析,能够协助医生进行更为精准的诊断。例如,百度灵医大模型凭借强大的数据处理能
- 【Microi吾码】开源力量赋能低代码创新,重塑软件开发生态格局
学无止尽5
人工智能开源低代码
我的个人主页文章专栏:Microi吾码一、引言在当今数字化浪潮汹涌澎湃的时代,软件开发的需求呈现出爆发式增长。企业为了在激烈的市场竞争中脱颖而出,不断寻求创新的解决方案以加速数字化转型。传统的软件开发方式往往面临着开发周期长、技术门槛高、成本高昂等诸多挑战。而Microi吾码的出现,犹如一盏明灯,为软件开发领域带来了新的曙光。它以开源和低代码为核心特色,正逐渐改变着软件的开发模式,让更多的企业和开
- 高可用架构-CAP理论
weixin_33939843
2019独角兽企业重金招聘Python工程师标准>>>整理自:《从零开始学架构》李运华著转载于:https://my.oschina.net/grace233/blog/2236736
- 分布式系统理论基础二-CAP
王知无(import_bigdata)
GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~引言CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论,“什么是CAP定理?”在Quora分布式系统分类下排名FAQ的No.1。CAP在程序员中也有较广的普及,它不仅
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- python中数字应该用什么表示_python的特殊数字类型(无穷大、无穷小等)
weixin_39646018
float('inf')表示正无穷-float('inf')或float('-inf')表示负无穷其中,inf均可以写成Inf起步python中整型不用担心溢出,因为python理论上可以表示无限大的整数,直到把内存挤爆。而无穷大在编程中常常需要的。比如,从一组数字中筛选出最小的数字。一般使用一个临时变量用于存储最后结果,变量去逐个比较和不断地更新。而这临时变量一般要初始无穷大或者去第一个元素的值
- 基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8
- 前后端分离实践(一)—— 基础理论篇
_云卷云舒_
前后端分离前后端分离前后端分离
前后端分离实践系列文章总目录目录一、什么是前后端分离?二、为什么需要前后端分离?1、前后端职责不清2、开发效率不高三、前后端分离究竟分离了什么?1、开发职责的分离2、交互方式的分离3、代码组织方式的分离4、应用部署的分离四、为什么要加入Node中间层来实现前后端分离?1、反思前后端的定义2、加入Node中间层之后的系统架构图3、加入Node中间层之后的前后端职责划分4、加入Node中间层的优缺点一
- AI与API的融合:构建智能互联技术世界的基石
IT数据V+I7809804594
人工智能数据分析python爬虫大数据
在当今科技飞速发展的时代,人工智能(AI)与应用程序接口(API)的融合正在开启智能应用的新纪元。AI以其强大的数据处理和分析能力,正在改变各行各业的工作方式,而API则作为连接技术与应用的桥梁,为AI技术的普及和应用提供了无限可能。本文将深入探讨AI与API的融合如何推动智能应用的创新和发展,以及其在各个领域的应用和前景。一、AI与API融合的背景随着大数据、云计算、物联网等技术的快速发展,人工
- 软件工程专业毕业设计选题:常新课题 创新思路
HaiLang_IT
软件工程毕业设计人工智能
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了软件工程专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇
- 凸优化学习
qiaoxinyu10623
凸优化1024程序员节
认为学习凸优化理论比较合适的路径是:学习/复习线性代数和(少量)高等数学的知识。实际上,凸优化理论综合使用了线性代数和微积分的相关知识,比如方向导数,雅克比矩阵,海森矩阵,KKT条件等。这里强烈推荐MIT公开课《线性代数》,GilbertStrang教授主讲,完全不是照本宣科,而是注重几何解释,非常具有启发性,学完之后,你会对线性代数有全新的认识。学习视频:-UP主汉语配音-【线性代数的本质】合集
- Java 多线程编程:并发控制与线程安全
m0_72547478
java开发语言
摘要:本文聚焦于Java多线程编程中的并发控制和线程安全问题。详细阐述了多线程编程的基本概念,包括线程的创建、启动与生命周期。深入探讨了在多线程环境下如何通过synchronized关键字、Lock接口等机制实现并发控制,确保共享资源的线程安全。同时,介绍了线程间的通信方式以及常见的线程池技术,为Java开发者在处理多线程任务时提供全面的理论与实践指导。一、引言随着计算机硬件性能的不断提升,多线程
- Imagen架构详解:理解其背后的技术与创新
范范0825
Imagen架构
Imagen架构详解:理解其背后的技术与创新引言近年来,生成式人工智能技术取得了飞速发展,特别是在图像生成领域。作为这一领域的重要创新之一,Imagen是由谷歌开发的一种基于文本生成图像的模型。它在生成高质量、逼真的图像方面表现出色,并通过其先进的架构和技术手段推动了图像生成的技术进步。Imagen不仅在图像生成质量上具有显著优势,还能够通过自然语言描述生成细致复杂的图像。本文将详细剖析Image
- Magnet Player:一款基于Web的磁力链媒体播放器
rgrgrwfe
前端
MagnetPlayer:一款基于Web的磁力链媒体播放器项目地址:https://gitcode.com/gh_mirrors/ma/magnet-player是一个创新的开源项目,它允许用户直接在浏览器中播放磁力链(MagnetURI)内容,无需下载或安装任何桌面应用程序。这个项目的独特之处在于它结合了现代Web技术,为用户提供了便捷、安全且跨平台的在线媒体播放体验。技术分析WebTorren
- 2025最新大数据毕业设计选题汇总:创新课题推荐
HaiLang_IT
毕业设计选题大数据毕业设计python
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了大数据专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 分布式-分布式必备理论基础:CAP和BASE
后端
一、CAP分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容忍性(P:PartitionTolerance),最多只能同时满足其中两项。一致性一致性指的是多个数据副本是否能保持一致的特性,在一致性的条件下,系统在执行数据更新操作之后能够从一致性状态转移到另一个一致性状态。对系统的一个数据更新成功之后,如果所有用户都能够读取到最新的值,该系统
- 【软考速通笔记】系统架构设计师⑬——云原生架构设计理论与实践
小康师兄
系统架构设计师笔记系统架构云原生软考分布式容器微服务
文章目录一、前言二、云原生架构基础知识2.1定义2.2特点2.3原则三、云原生架构模式3.1服务化架构模式3.2Mesh化架构模式3.3Serverless模式3.4存储计算分离模式3.5分布式事务模式3.6可观测模式3.7事件驱动架构3.8反云原生模式四、云原生技术4.1容器技术4.2容器编排技术4.3微服务4.4无服务器技术4.5服务网格五、其他一、前言笔记目录大纲请查阅:【软考速通笔记】系统
- 揭秘AIP智能体平台:构建未来AI基础设施的新引擎
大东(AIP内容运营专员)
人工智能
在人工智能的浪潮中,科技正在改变我们生活的方方面面。从智能推荐到自动驾驶,从个性化广告到实时风险控制,AI的触角无处不在。但这些令人瞩目的成果背后,究竟是什么在支撑着AI的飞速发展?答案是——人工智能平台。人工智能平台是连接计算资源、开发工具和行业应用的重要桥梁,支撑着从模型开发到行业场景落地的每一个环节。它不仅为开发者提供高效便捷的工具,还为企业创造了无限的创新可能。本文将带你深入了解人工智能平
- Elasticsearch 8.x 重要变化(qbit)
前言本文记录的重要变化重要与否为qbit个人判断官方Releasenotes:https://www.elastic.co/guide/en/elasticsearch/reference/curre...收费功能查看:ElasticStacksubscriptions回顾:向量搜索创新的时间线8.0(2022-02-11)What’snewin8.0默认启用安全特性(Securityfeatur
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 项目管理工具 project 替代:2024年8大主流选择
文章将介绍以下8款项目管理工具:1.Worktile;2.PingCode;3.云之家;4.奕锐斯;5.奥博思;6.Monday.com;7.Asana;8.Basecamp。本文整理了2024年8大主流项目管理工具,将详细介绍这些工具的特点以及它们为何能成为市场的热门选择,帮企业找到最符合需求的项目管理工具,轻松掌控项目进度,提升团队协作和产出。一、2024年8大主流项目管理工具1.Workti
- CSDN简介
神罗天征666
data
CSDN(ChineseSoftwareDeveloperNetwork),全称“中国软件开发者网络”,是一个专注服务于IT专业人士及IT企业的知识传播、在线学习、职业发展等全生命周期服务的平台。CSDN成立于1999年,是中国最大的中文IT技术社区,隶属于北京创新乐知网络技术有限公司。该平台汇聚了大量的软件开发者和IT专业人士,成为中国乃至全球范围内重要的IT技术交流和学习平台。CSDN的主要功
- 【开源】基于SpringBoot框架教学资料管理系统(计算机毕业设计)+万字毕业论文 T286
计算机毕业设计_gzs
开源springboot课程设计毕设java后端mybatis
系统合集跳转源码获取链接点击主页更能获取海量源码10年计算机开发经验,主营业务:源码获取、项目二开、语音辅导、远程调试、毕业设计、课程设计、毕业论文、BUG修改一、系统环境运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论上也可以。IDE环境:Eclipse,Myeclipse,IDEA或者SpringToolSuite都可以tomcat环境:Tomcat7.x,8.x,9
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 隐语安装部署
HZGame.
大数据数据库架构
主讲老师:周爱辉讲课链接:第4讲(上):隐语安装部署-理论篇丨隐私计算实训营第2期_哔哩哔哩_bilibili主讲老师:王祖利讲课链接:第4讲(下):SecretFlow与Secretnote的安装部署—实操篇丨隐私计算实训营第2期_哔哩哔哩_bilibili一、SecretFlow运行要求:1、环境要求Python>=3.8操作系统:•CentOS7•Anolis8•Ubuntu18.04/20
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- 华为ENSP:STP和链路聚合的管理与配置
Lethehong
华为ensp华为网络
这里将不再过度阐述STP和链路聚合的理论知识,不清楚的同学可以去观看Cisco文章中的理论知识理论知识https://blog.csdn.net/2301_76341691/article/details/145166547?fromshare=blogdetail&sharetype=blogdetail&sharerId=145166547&sharerefer=PC&sharesource=
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 2025年flask儿童教育系统程序+论文 可用于计算机毕业设计
zhihao503
flask课程设计python
本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容选题背景关于儿童教育系统的研究,现有研究主要集中在教育技术、教学设计、以及儿童心理学等领域。尽管这些研究为儿童教育提供了丰富的理论基础和实践指导,但专门针对整合了多种教育资源、适应不同年龄段儿童学习需求的综合教育系统的研究仍相对较少。随着信息技术的飞速发展和教育理念的不断
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不