Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10620 | Accepted: 3110 |
Description
Input
Output
Sample Input
7 9 2 1 2 2 2 3 5 3 7 5 1 4 1 4 3 1 4 5 7 5 7 1 1 6 3 6 7 3
Sample Output
5
Hint
Huge input data,scanf is recommended.
好久没有1A了。。。
题意:给你一个N个点(编号从1到N)和M条边的无向图以及每条边的权值。要求从1到N至少要有T条边不重复的路径,让你在满足这个前提下求出所有路径(当然是选出的那些边不重复的路径,不算没有选上的)上的最大边权值的 最小值。题目保证从1到N至少会有T条边不重复的路径,也就是说,题目一定有解。
思路:二分枚举所有被选中路径上 最大边权值mid,判断在mid值的限制下从1到N是否存在至少T条边不重复的路径。
边不重复的路径数目可以用最大流求解——枚举原图中所有无向边,若边权不大于mid,就将该边加进新图且边的容量为1。最后从1到N跑一下最大流就行了。
AC代码:
#include
#include
#include
#include
#include
#include
#define MAXN 200+10
#define MAXM 1600000+10
#define INF 0x3f3f3f3f
using namespace std;
struct Edge
{
int from, to, cap, flow, next;
};
Edge edge[MAXM], Redge[MAXM];
int head[MAXN], edgenum, Rhead[MAXN], Redgenum;
int dist[MAXN], cur[MAXN];
bool vis[MAXN];
int N, M, T;
struct Node
{
int from, to, val, next;
};
Node node[MAXM];
int Head[MAXN], nodenum;
void addNode(int u, int v, int w)
{
Node E = {u, v, w, Head[u]};
node[nodenum] = E;
Head[u] = nodenum++;
}
int Max;//记录最大边权
void input()
{
memset(Head, -1, sizeof(Head));
nodenum = 0;
Max = 0;
int a, b, c;
for(int i = 1; i <= M; i++)
{
scanf("%d%d%d", &a, &b, &c);
Max = max(Max, c);//更新
addNode(a, b, c);
addNode(b, a, c);
}
}
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int w)
{
Edge E1 = {u, v, w, 0, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, 0, 0, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
void getMap(int mid)
{
for(int i = 0; i < nodenum; i++)
{
if(node[i].val <= mid)//小于或等于限制
addEdge(node[i].from, node[i].to, 1);//加入新图
}
}
bool BFS(int s, int t)
{
queue Q;
memset(dist, -1, sizeof(dist));
memset(vis, false, sizeof(vis));
dist[s] = 0;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = edge[i].next)
{
Edge E = edge[i];
if(!vis[E.to] && E.cap > E.flow)
{
dist[E.to] = dist[u] + 1;
vis[E.to] = true;
if(E.to == t) return true;
Q.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a, int t)
{
if(x == t || a == 0) return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i = edge[i].next)
{
Edge &E = edge[i];
if(dist[E.to] == dist[x] + 1 && (f = DFS(E.to, min(a, E.cap-E.flow), t)) > 0)
{
edge[i].flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t)
{
int flow = 0;
while(BFS(s, t))
{
memcpy(cur, head, sizeof(head));
flow += DFS(s, INF, t);
}
return flow;
}
int main()
{
while(scanf("%d%d%d", &N, &M, &T) != EOF)
{
input();
int left = 0, right = Max, ans = Max;
while(right >= left)//二分查找
{
int mid = (left + right) >> 1;
init();
getMap(mid);
if(Maxflow(1, N) >= T)//判断是否存在T条边不重复的路径
{
ans = min(ans, mid);//更新
right = mid - 1;
}
else
left = mid + 1;
}
printf("%d\n", ans);
}
return 0;
}