利用Matlab求解线性规划问题

线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解:

% min f'x

% s.t .(约束条件): Ax<=b

% (等式约束条件): Aeqx=beq

% lb<=x<=ub

linprog函数的调用格式如下:

x=linprog(f,A,b)

x=linprog(f,A,b,Aeq,beq)

x=linprog(f,A,b,Aeq,beq,lb,ub)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

[x,fval]=linprog()

[x, fval, exitflag]=linprog()

[x, fval, exitflag, output]=linprog()

[x, fval, exitflag, output, lambda]=linprog()

其中:

x=linprog(f,A,b)返回值x为最优解向量。

x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A=[ ]、b=[ ] 。

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。

Options的参数描述:
Display显示水平。 选择’off’ 不显示输出;选择’Iter’显示每一 步迭代过程的输出;选择’final’ 显示最终结果。

MaxFunEvals 函数评价的最大允许次数

Maxiter 最大允许迭代次数

TolX x处的终止容限

[x,fval]=linprog(…) 左端 fval 返回解x处的目标函数值。

[x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分:

exitflag 描述函数计算的退出条件:若为正值,表示目标函数收敛于解x处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。

output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。

lambda 返回x处的拉格朗日乘子。它有以下属性:

lambda.lower-lambda的下界;

lambda.upper-lambda的上界;

lambda.ineqlin-lambda的线性不等式;

lambda.eqlin-lambda的线性等式。

下面通过具体的例子来说明:

例如:某农场I、II、III等耕地的面积分别为100 hm2、300 hm2和200 hm2,计划种植水稻、大豆和玉米,要求三种作物的最低收获量分别为190000kg、130000kg和350000kg。I、II、III等耕地种植三种作物的单产如表5.1.4所示。若三种作物的售价分别为水稻1.20元/kg大豆1.50元/kg,玉米0.80元/kg。那么,(1)如何制订种植计划,才能使总产量最大?(2)如何制订种植计划,才能使总产值最大?

表1不同等级耕地种植不同作物的单产(单位:kg / hm2)

I等耕地

II等耕地

III等耕地

水稻

11 000

9 500

9 000

大豆

8 000

6 800

6 000

玉米

14 000

12 000

10 000

首先根据题意建立线性规划模型(决策变量设置如表2所示,表中clip_image002[4]表示第clip_image004[4]种作物在第j等级的耕地上的种植面积。):

表2 作物计划种植面积(单位:hm2)

I等耕地

II等耕地

III等耕地

水稻

clip_image006[4]

clip_image008[4]

clip_image010[4]

大豆

clip_image012[4]

clip_image014[4]

clip_image016[4]

玉米

clip_image018[4]

clip_image020[4]

clip_image022[4]

约束方程如下:

耕地面积约束: clip_image024[4]

最低收获量约束: clip_image026[5]

非负约束: clip_image028[4]

(1)追求总产量最大,目标函数为:

clip_image030[4]

(2)追求总产值最大,目标函数为:

利用Matlab求解线性规划问题_第1张图片

根据求解函数linprog中的参数含义,列出系数矩阵,目标函数系数矩阵,以及约束条件等。

这些参数中没有的设为空。譬如,

(1)当追求总产量最大时,只要将参数

f=[-11000 –9500 –9000 –8000 –6800 –6000 –14000 –12000 -10000];

A=[1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000;

0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000;

0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000;

-11000.0000 0.0000 0.0000 -9500.0000 0.0000 0.0000 -9000.0000 0.0000 0.0000;

0.0000 -8000.0000 0.0000 0.0000 -6800.0000 0.0000 0.0000 -6000.0000 0.0000;

0.0000 0.0000 -14000.0000 0.0000 0.0000 -12000.0000 0.0000 0.0000 -10000.0000];

b=[100 300 200 -190000 -130000 -350000];

lb=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ];

代入求解函数clip_image034[6],即可求得结果。

(2)当追求总产值最大时,将参数

f=[-13200 –11400 –10800 –12000 –10200 –9000 –11200 –9600 -8000];

A=[1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000;

0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000;

0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000;

-11000.0000 0.0000 0.0000 -9500.0000 0.0000 0.0000 -9000.0000 0.0000 0.0000;

0.0000 -8000.0000 0.0000 0.0000 -6800.0000 0.0000 0.0000 -6000.0000 0.0000;

0.0000 0.0000 -14000.0000 0.0000 0.0000 -12000.0000 0.0000 0.0000 -10000.0000];

b=[100 300 200 -190000 -130000 -350000];

lb=[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ];

代入求解函数clip_image034[7],即可得到求解结果。

线性规划,还有其他的几种调用函数形式,可在Matlab帮助中查找LP或者LINPROG的帮助说明。

你可能感兴趣的:(mat_lab)