[Paper note] Joint Learning of Single-image and Cross-image Representations for Person Re-id.

Intuition

  • Re-id method: single-image representation (SIR) and cross-image representation (CIR).
  • Combine them together!

Method

  • SIR measurements are special cases of CIR-based classification.
    • SIR(Euclidean distance): SSIR(xi,xj)=||f(xi)f(xj)||22
    • CIR: SCIR(xi,xj)=wTg(xi,xj)b
  • Also combine pairwise loss and triplet loss.
    • Pairwise
      LPSIR=i,j[1+hij(||f(xi)f(xj)||22bSIR)]+
      LPCIR=αP2||w||22+i,j[1+hij(wTg(xi,xj)bSIR)]+
      where bSIR,bCIR is the distance threshold (margin), αP is the trade-off parameter, which is set to 0.0005 in the experiments
      Combine: LP=LPSIR+ηPLPCIR
    • Triplet
      LTSIR=i,j,k[bSIR||f(xi)f(xk)||22+||f(xi)f(xj)||22)]+
      LTCIR=αP2||w||22+i,j,k[bCIR+wTg(xi,xk)wTg(xi,xj)]+
      Combine: LT=LTSIR+ηTLTCIR
  • Compute cross-image feature map
    φr(xi,xj)=max(0,br+qkq,rϕq(xi)+lq,rϕq(xj))

Result

  • Dataset: CUHK-01/03, VIPeR.
  • 52.17% on CUHK03.
  • Investigation on sensitivity of trade-off parameter.
  • 71.8% on CUHK01 (pretrain on CUHK03).
  • 35.76% on VIPeR.

你可能感兴趣的:(paper-note)