GCC 提供的原子操作

GCC 提供的原子操作

gcc从4.1.2提供了__sync_*系列的built-in函数,用于提供加减和逻辑运算的原子操作。

其声明如下:

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)


type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

这两组函数的区别在于第一组返回更新前的值,第二组返回更新后的值。

type可以是1,2,4或8字节长度的int类型,即:

int8_t / uint8_t
int16_t / uint16_t
int32_t / uint32_t
int64_t / uint64_t

后面的可扩展参数(…)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier(类似于linux kernel 中的mb(),表示这个操作之前的所有内存操作不会被重排序到这个操作之后),所以可以略掉这个参数。

bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)

这两个函数提供原子的比较和交换,如果*ptr == oldval,就将newval写入*ptr,
第一个函数在相等并写入的情况下返回true.
第二个函数在返回操作之前的值。

__sync_synchronize (...)

发出一个full barrier.

关于memory barrier,cpu会对我们的指令进行排序,一般说来会提高程序的效率,但有时候可能造成我们不希望得到的结果,举一个例子,比如我们有一个硬件设备,它有4个寄存器,当你发出一个操作指令的时候,一个寄存器存的是你的操作指令(比如READ),两个寄存器存的是参数(比如是地址和size),最后一个寄存器是控制寄存器,在所有的参数都设置好之后向其发出指令,设备开始读取参数,执行命令,程序可能如下:

    write1(dev.register_size,size);
    write1(dev.register_addr,addr);
    write1(dev.register_cmd,READ);
    write1(dev.register_control,GO);

如果最后一条write1被换到了前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制cpu执行完前面的写入以后再执行最后一条:

    write1(dev.register_size,size);
    write1(dev.register_addr,addr);
    write1(dev.register_cmd,READ);
    __sync_synchronize();
    write1(dev.register_control,GO);

memory barrier有几种类型:
acquire barrier : 不允许将barrier之后的内存读取指令移到barrier之前(linux kernel中的wmb())。
release barrier : 不允许将barrier之前的内存读取指令移到barrier之后 (linux kernel中的rmb())。
full barrier : 以上两种barrier的合集(linux kernel中的mb())。

还有两个函数:

type __sync_lock_test_and_set (type *ptr, type value, ...)

将*ptr设为value并返回*ptr操作之前的值。

void __sync_lock_release (type *ptr, ...)

将*ptr置0

示例程序:

#include 
#include 
#include 

static int count = 0;


void *test_func(void *arg)
{
        int i=0;
        for(i=0;i<20000;++i){
                __sync_fetch_and_add(&count,1);
        }
        return NULL;
}

int main(int argc, const char *argv[])
{
        pthread_t id[20];
        int i = 0;

        for(i=0;i<20;++i){
                pthread_create(&id[i],NULL,test_func,NULL);
        }

        for(i=0;i<20;++i){
                pthread_join(id[i],NULL);
        }

        printf("%d\n",count);
        return 0;
}

参考:

  1. http://refspecs.freestandards.org/elf/IA64-SysV-psABI.pdf section 7.4
  2. http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins

一.前言

C/C++中数值操作,如自加(n++)自减(n–-)及赋值(n=2)操作都不是原子操作,如果是多线程程序需要使用全局计数器,程序就需要使用锁或者互斥量,对于较高并发的程序,会造成一定的性能瓶颈。

二.gcc原子操作api

1.概要

为了提高赋值操作的效率,gcc提供了一组api,通过汇编级别的代码来保证赋值类操作的原子性,相对于涉及到操作系统系统调用和应用层同步的锁和互斥量,这组api的效率要高很多。

2.n++类

type __sync_fetch_and_add(type *ptr, type value, ...); // m+n
type __sync_fetch_and_sub(type *ptr, type value, ...); // m-n
type __sync_fetch_and_or(type *ptr, type value, ...);  // m|n
type __sync_fetch_and_and(type *ptr, type value, ...); // m&n
type __sync_fetch_and_xor(type *ptr, type value, ...); // m^n
type __sync_fetch_and_nand(type *ptr, type value, ...); // (~m)&n
/* 对应的伪代码 */
{ tmp = *ptr; *ptr op= value; return tmp; }
{ tmp = *ptr; *ptr = (~tmp) & value; return tmp; }   // nand

3.++n类

type __sync_add_and_fetch(type *ptr, type value, ...); // m+n
type __sync_sub_and_fetch(type *ptr, type value, ...); // m-n
type __sync_or_and_fetch(type *ptr, type value, ...); // m|n
type __sync_and_and_fetch(type *ptr, type value, ...); // m&n
type __sync_xor_and_fetch(type *ptr, type value, ...); // m^n
type __sync_nand_and_fetch(type *ptr, type value, ...); // (~m)&n
/* 对应的伪代码 */
{ *ptr op= value; return *ptr; }
{ *ptr = (~*ptr) & value; return *ptr; } // nand

4.CAS类

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...);
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...);
/* 对应的伪代码 */
{ if (*ptr == oldval) { *ptr = newval; return true; } else { return false; } }
{ if (*ptr == oldval) { *ptr = newval; } return oldval; }

三.程序实例

例子不是并发的程序,只是演示各api的使用参数和返回。由于是gcc内置api,所以并不需要任何头文件。
#include 

int main() {
    int num = 0;

    /*
     * n++;
     * __sync_fetch_and_add(10, 3) = 10
     * num = 13
     */
    num = 10;
    printf("__sync_fetch_and_add(%d, %d) = %d\n", 10, 3, __sync_fetch_and_add(&num, 3));
    printf("num = %d\n", num);

    /*
     * ++n;
     * __sync_and_add_and_fetch(10, 3) = 13
     * num = 13
     */
    num = 10;
    printf("__sync_and_add_and_fetch(%d, %d) = %d\n", 10, 3, __sync_add_and_fetch(&num, 3));
    printf("num = %d\n", num);

    /*
     * CAS, match
     * __sync_val_compare_and_swap(10, 10, 2) = 10
     * num = 2
     */
    num = 10;
    printf("__sync_val_compare_and_swap(%d, %d, %d) = %d\n", 10, 10, 2, __sync_val_compare_and_swap(&num, 10, 2));
    printf("num = %d\n", num);

    /*
     * CAS, not match
     * __sync_val_compare_and_swap(10, 3, 5) = 10
     * num = 10
     */
    num = 10;
    printf("__sync_val_compare_and_swap(%d, %d, %d) = %d\n", 10, 3, 5, __sync_val_compare_and_swap(&num, 1, 2));
    printf("num = %d\n", num);

    return 0;
}

你可能感兴趣的:(gcc,计算机基础)