我们在前面曾经说过,发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据包排序完成后才呈现在内核缓冲区,所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。
一、粘包问题可以用下图来表示:
假设主机A send了两条消息M1和M2各10k给主机B,由于主机B一次接收的字节数是不确定的,接收方收到数据的情况可能是:
• 一次性收到20k 数据
二、粘包问题的解决方案
本质上是要在应用层维护消息与消息的边界(下文的“包”可以认为是“消息”)
1、定长包
2、包尾加\r\n(ftp)
3、包头加上包体长度
4、更复杂的应用层协议
对于条目2,缺点是如果消息本身含有\r\n字符,则也分不清消息的边界。
对于条目1,即我们需要发送和接收定长包。因为TCP协议是面向流的,read和write调用的返回值往往小于参数指定的字节数。对于read调用(套接字标志为阻塞),如果接收缓冲区中有20字节,请求读100个字节,就会返回20。对于write调用,如果请求写100个字节,而发送缓冲区中只有20个字节的空闲位置,那么write会阻塞,直到把100个字节全部交给发送缓冲区才返回。为避免这些情况干扰主程序的逻辑,确保读写我们所请求的字节数,我们实现了两个包装函数readn和writen,如下所示。
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
ssize_t readn(
int fd,
void *buf, size_t count)
{ size_t nleft = count; ssize_t nread; char *bufp = ( char *)buf; while (nleft > 0) { if ((nread = read(fd, bufp, nleft)) < 0) { if (errno == EINTR) continue; return - 1; } else if (nread == 0) //对方关闭或者已经读到eof return count - nleft; bufp += nread; nleft -= nread; } return count; } ssize_t writen( int fd, const void *buf, size_t count) { size_t nleft = count; ssize_t nwritten; char *bufp = ( char *)buf; while (nleft > 0) { if ((nwritten = write(fd, bufp, nleft)) < 0) { if (errno == EINTR) continue; return - 1; } else if (nwritten == 0) continue; bufp += nwritten; nleft -= nwritten; } return count; } |
需要注意的是一旦在我们的客户端/服务器程序中使用了这两个函数,则每次读取和写入的大小应该是一致的,比如设置为1024个字节,但定长包的问题在于不能根据实际情况读取数据,可能会造成网络阻塞,比如现在我们只是敲入了几个字符,却还是得发送1024个字节,造成极大的空间浪费。
此时条目3是比较好的解决办法,其实也可以算是自定义的一种简单应用层协议。比如我们可以自定义一个包体结构
struct packet {
int len;
char buf[1024];
};
先接收固定的4个字节,从中得知实际数据的长度n,再调用readn 读取n个字符,这样数据包之间有了界定,且不用发送定长包浪费网络资源,是比较好的解决方案。服务器端在前面的fork程序的基础上把do_service函数更改如下:
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
void do_service(
int conn)
{ struct packet recvbuf; int n; while ( 1) { memset(&recvbuf, 0, sizeof(recvbuf)); int ret = readn(conn, &recvbuf.len, 4); if (ret == - 1) ERR_EXIT( "read error"); else if (ret < 4) //客户端关闭 { printf( "client close\n"); break; } n = ntohl(recvbuf.len); ret = readn(conn, recvbuf.buf, n); if (ret == - 1) ERR_EXIT( "read error"); if (ret < n) //客户端关闭 { printf( "client close\n"); break; } fputs(recvbuf.buf, stdout); writen(conn, &recvbuf, 4 + n); } } |
客户端程序的修改与上类似,不再赘述。
对于条目4,举例如 如TLV 编解码格式
struct TLV
{
uint8_t tag;
uint16_t len;
char value[0];
}__attribute__((packed));
注意value分配的是0大小,最后一个成员为可变长的数组(c99中的柔性数组),对于TLV(Type-Length-Value)形式的结构,或者其他需要变长度的结构体,用这种方式定义最好。使用起来非常方便,创建时,malloc一段结构体大小加上可变长数据长度的空间给它,可变长部分可按数组的方式访问,释放时,直接把整个结构体free掉就可以了。__attribute__(packed)用来强制不对struct TLV进行4字节对齐,目的是为了获取真实的TLV的空间使用情况。
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
int main(
void)
{ char *szMsg = "aaaaaaaaa"; cout << sizeof(TLV) << endl; //the size of TLV uint16_t len = strlen(szMsg) + 1; struct TLV *pTLV; pTLV = ( struct TLV *)malloc( sizeof( struct TLV) + sizeof( char) * len); pTLV->tag = 0x2; pTLV->len = len; memcpy(pTLV->value, szMsg, len); cout << pTLV->value << endl; free(pTLV); pTLV = NULL; return 0; } |