使用TensorFlow双流卷积神经网络对CK+表情数据库进行分类

本文所有代码已经放在GitHub上https://github.com/zhuzhuxia1994/CK-TensorFlow

双流卷积神经网络我最初是在做行为识别的时候接触到的,双流指的是时间流和空间流,再具体一点就是,时间流指的是对光流图片进行卷积处理,然后空间流指的是对RGB图片进行卷积处理,然后进行融合操作。这样往往比单纯对RGB图片进行卷积效果好,特别是在视频行为识别等方面,因为引入了时间信息。话不多说,放上代码及讲解。

以下代码是对表情识别CK+数据库进行实验,CK=数据库的地址如下http://www.consortium.ri.cmu.edu/ckagree/ 需要填写信息,如果有同学需要可以在博客下面留言,我会放上百度云地址~(先赞再跟我要哦,不然不理你,嘿嘿嘿)

 import tensorflow as tf

#%%
def inference(s_images,T_images, batch_size, n_classes):
    '''Build the model
    Args:
        images: image batch, 4D tensor, tf.float32, [batch_size, width, height, channels]
    Returns:
        output tensor with the computed logits, float, [batch_size, n_classes]
    '''
    #conv1, shape = [kernel size, kernel size, channels, kernel numbers]
    
    # one stream space
    with tf.variable_scope('s_conv1') as scope:
        weights = tf.get_variable('weights', 
                                  shape = [3,3,3, 16],
                                  dtype = tf.float32, 
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases', 
                                 shape=[16],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(s_images, weights, strides=[1,1,1,1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        s_conv1 = tf.nn.relu(pre_activation, name= scope.name)
    
    #pool1 and norm1   
    with tf.variable_scope('s_pooling1_lrn') as scope:
        pool1 = tf.nn.max_pool(s_conv1, ksize=[1,3,3,1],strides=[1,2,2,1],
                               padding='SAME', name='s_pooling1')
        norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='s_norm1')
    
    #conv2
    with tf.variable_scope('s_conv2') as scope:
        weights = tf.get_variable('weights',
                                  shape=[3,3,16,16],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[16], 
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        s_conv2 = tf.nn.relu(pre_activation, name='s_conv2')
    
    
    #pool2 and norm2
    with tf.variable_scope('s_pooling2_lrn') as scope:
        norm2 = tf.nn.lrn(s_conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='s_norm2')
        pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],
                               padding='SAME',name='s_pooling2')
    
    
    #local3
    with tf.variable_scope('s_local3') as scope:
        reshape = tf.reshape(pool2, shape=[batch_size, -1])
        dim = reshape.get_shape()[1].value
        weights = tf.get_variable('weights',
                                  shape=[dim,128],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[128],
                                 dtype=tf.float32, 
                                 initializer=tf.constant_initializer(0.1))
        s_local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)    
    
    #local4
    #with tf.variable_scope('s_local4') as scope:
    #    weights = tf.get_variable('weights',
    #                              shape=[128,128],
    #                              dtype=tf.float32, 
    #                              initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
    #    biases = tf.get_variable('biases',
    #                             shape=[128],
    #                             dtype=tf.float32,
    #                             initializer=tf.constant_initializer(0.1))
    #    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='s_local4')


    # another stream temporal
    with tf.variable_scope('T_conv1') as scope:
        weights = tf.get_variable('weights', 
                                  shape = [3,3,3, 16],
                                  dtype = tf.float32, 
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases', 
                                 shape=[16],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(T_images, weights, strides=[1,1,1,1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        T_conv1 = tf.nn.relu(pre_activation, name= scope.name)
    
    #pool1 and norm1   
    with tf.variable_scope('T_pooling1_lrn') as scope:
        pool1 = tf.nn.max_pool(T_conv1, ksize=[1,3,3,1],strides=[1,2,2,1],
                               padding='SAME', name='T_pooling1')
        norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='T_norm1')
    
    #conv2
    with tf.variable_scope('T_conv2') as scope:
        weights = tf.get_variable('weights',
                                  shape=[3,3,16,16],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[16], 
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        T_conv2 = tf.nn.relu(pre_activation, name='T_conv2')
    
    
    #pool2 and norm2
    with tf.variable_scope('T_pooling2_lrn') as scope:
        norm2 = tf.nn.lrn(T_conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='T_norm2')
        pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],
                               padding='SAME',name='T_pooling2')
    
    
    #local3
    with tf.variable_scope('T_local3') as scope:
        reshape = tf.reshape(pool2, shape=[batch_size, -1])
        dim = reshape.get_shape()[1].value
        weights = tf.get_variable('weights',
                                  shape=[dim,128],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[128],
                                 dtype=tf.float32, 
                                 initializer=tf.constant_initializer(0.1))
        T_local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)    

    local3 = s_local3 + T_local3
    
    #local4
    with tf.variable_scope('local4') as scope:
        weights = tf.get_variable('weights',
                                  shape=[128,128],
                                  dtype=tf.float32, 
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[128],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')

     
        
    # softmax
    with tf.variable_scope('softmax_linear') as scope:
        weights = tf.get_variable('softmax_linear',
                                  shape=[128, n_classes],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases', 
                                 shape=[n_classes],
                                 dtype=tf.float32, 
                                 initializer=tf.constant_initializer(0.1))
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
    
    return softmax_linear

#%%
def losses(logits, labels):
    '''Compute loss from logits and labels
    Args:
        logits: logits tensor, float, [batch_size, n_classes]
        labels: label tensor, tf.int32, [batch_size]
        
    Returns:
        loss tensor of float type
    '''
    with tf.variable_scope('loss') as scope:
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\
                        (logits=logits, labels=labels, name='xentropy_per_example')
        loss = tf.reduce_mean(cross_entropy, name='loss')
        tf.summary.scalar(scope.name+'/loss', loss)
    return loss

#%%
def trainning(loss, learning_rate):
    '''Training ops, the Op returned by this function is what must be passed to 
        'sess.run()' call to cause the model to train.
        
    Args:
        loss: loss tensor, from losses()
        
    Returns:
        train_op: The op for trainning
    '''
    with tf.name_scope('optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
        global_step = tf.Variable(0, name='global_step', trainable=False)
        train_op = optimizer.minimize(loss, global_step= global_step)
    return train_op

#%%
def evaluation(logits, labels):
  """Evaluate the quality of the logits at predicting the label.
  Args:
    logits: Logits tensor, float - [batch_size, NUM_CLASSES].
    labels: Labels tensor, int32 - [batch_size], with values in the
      range [0, NUM_CLASSES).
  Returns:
    A scalar int32 tensor with the number of examples (out of batch_size)
    that were predicted correctly.
  """
  with tf.variable_scope('accuracy') as scope:
      correct = tf.nn.in_top_k(logits, labels, 1)
      correct = tf.cast(correct, tf.float16)
      accuracy = tf.reduce_mean(correct)
      #correct_prediction = tf.equal(tf.argmax(logits,1),tf.argmax(labels,1))
      #accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
      tf.summary.scalar(scope.name+'/accuracy', accuracy)
  return accuracy
代码中写的S_conv等以S开头的是空间流,也就是对RGB进行训练,T_conv等以T开头的是时间流,对光流图片进行训练。并将结果在全连接层进行融合。以上代码是双流卷积模型的代码,其中的层数都可以修改。

import tensorflow as tf 
import numpy as np 
import os


#train_dir = '/home/hrz/projects/tensorflow/My-TensorFlow-tutorials/cats_vs_dogs/data/train/'

def get_files(file_dir):


	angry = []
	label_angry = []
	happy = []
	label_happy = []
	surprised = []
	label_surprised = []
	disgusted = []
	label_disgusted = []
	fearful = []
	label_fearful = []
	sadness = []
	label_sadness = []
	for sub_file_dir in os.listdir(file_dir):
		if sub_file_dir == 'angry':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				angry.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_angry.append(0)
		elif sub_file_dir == 'disgusted':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				disgusted.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_disgusted.append(1)
		elif sub_file_dir == 'fearful':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				fearful.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_fearful.append(2)
		elif sub_file_dir == 'happy':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				happy.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_happy.append(3)
		elif sub_file_dir == 'sadness':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				sadness.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_sadness.append(4)
		elif sub_file_dir == 'surprised':
			for name in os.listdir(file_dir+'/'+sub_file_dir):
				surprised.append(file_dir+'/'+sub_file_dir+'/'+name)
				label_surprised.append(5)
	print('Already!!',len(label_angry))


	image_list = np.hstack((angry,disgusted,fearful,happy,sadness,surprised))
	label_list = np.hstack((label_angry,label_disgusted,label_fearful,label_happy,label_sadness,label_surprised))
	temp = np.array([image_list,label_list])
	temp = temp.transpose()
	np.random.shuffle(temp)

	image_list = list(temp[:, 0])
	label_list = list(temp[:, 1])
	label_list = [int(i) for i in label_list]
    
    
	return image_list, label_list


def get_batch(image,label,image_W,image_H,batch_size,capacity):
	'''
	Args:
        image: list type
        label: list type
        image_W: image width
        image_H: image height
        batch_size: batch size
        capacity: the maximum elements in queue
    Returns:
        image_batch: 4D tensor [batch_size, width, height, 3], dtype=tf.float32
        label_batch: 1D tensor [batch_size], dtype=tf.int32
    '''

	image = tf.cast(image,tf.string)
	label = tf.cast(label,tf.int32)

	input_queue = tf.train.slice_input_producer([image,label])
	label = input_queue[1]
	image_contents = tf.read_file(input_queue[0])
	image = tf.image.decode_jpeg(image_contents,channels=3)

	image = tf.image.resize_image_with_crop_or_pad(image,image_W,image_H)

	image = tf.image.per_image_standardization(image)

	image_batch,label_batch = tf.train.batch([image,label],
    											batch_size = batch_size,
    											num_threads = 64,
    											capacity = capacity)

	label_batch = tf.reshape(label_batch,[batch_size])
	image_batch = tf.cast(image_batch,tf.float32)

	return image_batch,label_batch

首先对数据库进行手动贴标签,获得image_list和label_list,是图片的路径以及所对应的标签信息。输入形式采用的是TensorFlow中的queue队列形式,对于较大规模的数据输入比较好使。不过要注意其中的tf.image.resize_image_with_crop_or_pad函数,这个函数其实是将图片的中间给截取出来,举个例子,原图尺寸为1080*1080,那使用这个函数想将图片变为256*256,实际的效果是抠出原图最中间的256*256的像素,而不是按比例缩小,所以如果同学们想换个数据库,可能就需要更换一个函数tf.resize_image,这个才是按比例缩放。get_batch函数就是将图片打包。

import os
import numpy as np
import tensorflow as tf
import input_data
import model
#%%

N_CLASSES = 6
IMG_W = 256  # resize the image, if the input image is too large, training will be very slow.
IMG_H = 256
BATCH_SIZE = 8
CAPACITY = 10000
MAX_STEP = 800 # with current parameters, it is suggested to use MAX_STEP>10k
learning_rate = 0.0001 # with current parameters, it is suggested to use learning rate<0.0001


#%%
def run_training():
    
    # you need to change the directories to yours.
	s_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+YuanTu'
	T_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+X_mid'
	logs_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+'
	s_train, s_train_label = input_data.get_files(s_train_dir)
	s_train_batch, s_train_label_batch = input_data.get_batch(s_train,
                                                          s_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY)   
	T_train, T_train_label = input_data.get_files(T_train_dir)
    
	T_train_batch, T_train_label_batch = input_data.get_batch(T_train,
                                                          T_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY) 

	train_logits = model.inference(s_train_batch,T_train_batch, BATCH_SIZE, N_CLASSES)
	train_loss = model.losses(train_logits, s_train_label_batch)        
	train_op = model.trainning(train_loss, learning_rate)
	train__acc = model.evaluation(train_logits, s_train_label_batch)
       
	summary_op = tf.summary.merge_all()  #汇总操作
	sess = tf.Session()   #定义sess
	train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) #
	saver = tf.train.Saver()    #保存操作
    
	sess.run(tf.global_variables_initializer())#初始化所有变量
	coord = tf.train.Coordinator() #设置多线程协调器
	threads = tf.train.start_queue_runners(sess=sess, coord=coord) #开始Queue Runners(队列运行器)
    
    #开始训练过程
	try:
		for step in np.arange(MAX_STEP):
			if coord.should_stop():
					break
			_, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc]) 
               
			if step % 50 == 0:
				print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
				#运行汇总操作,写入汇总
				summary_str = sess.run(summary_op)
				train_writer.add_summary(summary_str, step)
            
			if step % 800 == 0 or (step + 1) == MAX_STEP:
				#保存当前模型和权重到 logs_train_dir,global_step为当前迭代次数
				checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
				saver.save(sess, checkpoint_path, global_step=step)
                
	except tf.errors.OutOfRangeError:
		print('Done training -- epoch limit reached')
	finally:
		coord.request_stop()
        
	coord.join(threads)
	sess.close()
run_training()
上面就是训练的过程比较简单易懂,不再赘述,如果有问题可以问我,还有test.py没有贴出了,一并放在我的GitHub中,地址https://github.com/zhuzhuxia1994/CK-TensorFlow

你可能感兴趣的:(TensorFlow)