Hadoop2.6.0 + zookeeper集群环境搭建

阅读更多

前提:已安装好centos6.5操作系统

                                            Hadoop HA(QJM)集群配置规划

IP

Hostname

备注

192.168.100.101

h1m1

NN(active)、RM、ZKFC

192.168.100.102

h1m2

NN(standby)、RM、ZKFC

192.168.100.103

h1s1

DN、NM、JN、QPM

192.168.100.104

h1s2

DN、NM、JN、QPM

192.168.100.105

h1s3

DN、NM、JN、QPM

192.168.100.106

h1s4

DN、NM、JN、QPM

192.168.100.107

h1s5

DN、NM、JN、QPM


说明:
        NN: NameNode
        RM: ResourceManager
        ZKFC: DFSZKFailoverController
        DN: DataNode
        NM: NodeManager
        JN: JournalNode
        QPM: QuorumPeerMain


1. 系统环境设置(先配置master节点h1m1)

1.1修改主机名
# vim /etc/sysconfig/network
    1 NETWORKING=yes
    2 HOSTNAME=h1m1
    3 NTPSERVERARGS=iburst


1.2 修改IP地址
进入Linux图形界面 -> 右键点击右上方的网络连接->点击“编辑连接…” ->添加一个新网络“主机连接” ->选择IPv4 ->方法选择为手动 ->点击添加按钮 ->添加IP:192.168.100.101子网掩码:255.255.255.0网关:192.168.100.254 ->应用
Hadoop2.6.0 + zookeeper集群环境搭建_第1张图片
 
1.3修改主机名和IP的映射关系(hosts)
# vim/etc/hosts
添加:192.168.100.100 h1m1~192.168.100.107 h1s5

1.4关闭防火墙

# service iptables status        //查看防火墙状态
# service iptables stop           //关闭防火墙
# chkconfig iptables --list       //查看防火墙开机启动状态
# chkconfig iptables off          //关闭防火墙开机启动

1.5重启系统
# reboot


2.安装jdk 
下载地址:http://pan.baidu.com/s/1i34B3JB

2.1上传
 
2.2解压jdk

# mkdir /usr/lib/jdk        //创建目录
# tar -zxvf jdk-8u40-linux-x64.tar.gz           //解压
# mv jdk1.8.0_40 /usr/lib/jdk
                 
2.3将Java添加到环境变量中
# vim /etc/profile
//在文件最后添加
export JAVA_HOME=/usr/java/jdk1.8.0_40
export PATH=.:$JAVA_HOME/bin:$PATH

# source /etc/profile           //刷新配置
# java -version


3. 配置ssh免登陆
# cd ~      //进入到我的home目录
# ssh-keygen -t rsa -P ''(四个回车)
执行完这个命令后,会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)
将公钥拷贝到要免登陆的机器上

# ssh-copy-id h1m1 (或# cat ~/.ssh/id_rsa.pub>> ~/.ssh/ authorized_keys) 
# cat ~/.ssh/authorized_keys       //查看rsa
Hadoop2.6.0 + zookeeper集群环境搭建_第2张图片


注:为方便在集群中针对多节点执行命令,在此提供一个简单脚本供大家使用:

[plain]  view plain  copy
 
  1. #!/usr/bin/env bash  
  2.   
  3. doCommand() {  
  4.     hosts=`sed -n '/^[^#]/p' hostlist`  
  5.     for host in $hosts  
  6.     do  
  7.         echo ""  
  8.         echo HOST $host  
  9.         ssh $host "$@"  
  10.     done  
  11.     return 0  
  12. }   
  13.   
  14. if [ $# -lt 1 ]; then  
  15.     echo "$0 cmd"  
  16.     exit  
  17. fi   
  18.   
  19. doCommand "$@"  
  20. echo "return from doCommand"  


用法:将本脚本保存并修改权限(chmod 775 doCommand.sh). 在脚本目录下创建一个hostlist文件,其中保存要执行命令的host主机列表. 
使用命令:./doCommand.sh “
e.g. ./doCommand.sh “ls”

 


4.在h1m1上安装hadoop2.6.0(注:为方便操作,使用xshell远程登录到linux)
按安装java方式把hadoop解压到/usr/lib/hadoop

4.1配置hadoop
将hadoop添加到环境变量中
# vim /etc/profile
export JAVA_HOME=/usr/java/jdk1.8.0_40
export HADOOP_HOME=/usr/lib/hadoop
export PATH=.:$JAVA_HOME/bin:$HADOOP_HOME/bin:$PATH

4.1.1 配置hadoop-env.sh
# cd /usr/lib/hadoop
# vim etc/hadoop/hadoop-env.sh(注意,此处不是系统的etc目录)
将JAVA_HOME修改为刚才配置的位置

 
4.1.2配置core-site.xml
# vim etc/hadoop/core-site.xml
添加以下内容:

[plain]  view plain  copy
 
  1.   
  2.       
  3.       
  4.         fs.defaultFS  
  5.         hdfs://mycluster  
  6.       
  7.   
  8.       
  9.       
  10.         hadoop.tmp.dir  
  11.         /usr/lib/hadoop/tmp  
  12.       
  13.   
  14.       
  15.       
  16.         ha.zookeeper.quorum  
  17.         h1s1:2181,h1s2:2181,h1s3:2181,h1s4:2181,h1s5:2181  
  18.       
  19.   


4.1.3 配置hdfs-site.xml
HA主要配置是在本文件中,参考官网:http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
# vim etc/hadoop/hdfs-site.xml
添加以下内容:

[plain]  view plain  copy
 
  1.   
  2.       
  3.       
  4.         dfs.nameservices  
  5.         mycluster  
  6.       
  7.       
  8.       
  9.       
  10.         dfs.ha.namenodes.mycluster  
  11.         nn1,nn2  
  12.       
  13.       
  14.       
  15.       
  16.         dfs.namenode.rpc-address.mycluster.nn1  
  17.         h1m1:9000  
  18.       
  19.       
  20.       
  21.       
  22.         dfs.namenode.http-address.mycluster.nn1  
  23.         h1m1:50070  
  24.       
  25.       
  26.       
  27.       
  28.         dfs.namenode.rpc-address.mycluster.nn2  
  29.         h1m2:9000  
  30.       
  31.       
  32.       
  33.       
  34.         dfs.namenode.http-address.mycluster.nn2  
  35.         h1m2:50070  
  36.       
  37.       
  38.       
  39.       
  40.         dfs.namenode.shared.edits.dir  
  41.         qjournal://h1s1:8485;h1s2:8485;h1s3:8485;h1s4:8485;h1s5:8485/mycluster  
  42.       
  43.       
  44.       
  45.       
  46.         dfs.journalnode.edits.dir  
  47.         /usr/lib/hadoop/journal  
  48.       
  49.       
  50.       
  51.       
  52.         dfs.ha.automatic-failover.enabled  
  53.         true  
  54.       
  55.       
  56.       
  57.       
  58.         dfs.client.failover.proxy.provider.mycluster  
  59.         org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider  
  60.       
  61.       
  62.       
  63.       
  64.         dfs.ha.fencing.methods  
  65.           
  66.             sshfence  
  67.             shell(/bin/true)  
  68.           
  69.       
  70.       
  71.       
  72.       
  73.         dfs.ha.fencing.ssh.private-key-files  
  74.         /home/hadoop/.ssh/id_rsa  
  75.       
  76.       
  77.       
  78.       
  79.         dfs.ha.fencing.ssh.connect-timeout  
  80.         30000  
  81.       
  82.   


4.1.4配置mapred-site.xml
# cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
# vim etc/hadoop/mapred-site.xml
添加以下内容:

[plain]  view plain  copy
 
  1.   
  2.       
  3.         mapreduce.framework.name  
  4.         yarn  
  5.         true  
  6.        
  7.   


4.1.5配置yarn-site.xml
# vim etc/hadoop/yarn-site.xml
添加以下内容:

[plain]  view plain  copy
 
  1.   
  2.       
  3.       
  4.         yarn.resourcemanager.ha.enabled  
  5.         true  
  6.       
  7.   
  8.       
  9.       
  10.         yarn.resourcemanager.cluster-id  
  11.         yrc  
  12.       
  13.   
  14.       
  15.       
  16.         yarn.resourcemanager.ha.rm-ids  
  17.         rm1,rm2  
  18.       
  19.   
  20.       
  21.       
  22.         yarn.resourcemanager.hostname.rm1  
  23.         h1m1  
  24.       
  25.   
  26.       
  27.         yarn.resourcemanager.hostname.rm2  
  28.         h1m2  
  29.       
  30.   
  31.       
  32.       
  33.         yarn.resourcemanager.zk-address  
  34.         h1s1:2181,h1s2:2181,h1s3:2181,h1s4:2181,h1s5:2181  
  35.       
  36.   
  37.       
  38.         yarn.nodemanager.aux-services  
  39.         mapreduce_shuffle  
  40.       
  41.   


4.2 修改slaves
slaves是指定子节点的位置,因为要在h1m1上启动HDFS、yarn,所以h1m1上的slaves文件指定的是datanode的位置和nodemanager的位置
# vim /usr/lib/hadoop/etc/hadoop/slaves
h1s1
h1s2
h1s3
h1s4
h1s5

4.3 配置免密码登陆
#配置h1m1到h1m2、h1s1、h1s2、h1s3、h1s4、h1s5的免密码登陆
#在h1m1上生产一对钥匙
ssh-keygen -t rsa -P ''
#将公钥拷贝到其他节点,包括自己
ssh-coyp-id h1m1
ssh-coyp-id h1m2
ssh-coyp-id h1s1
ssh-coyp-id h1s2
ssh-coyp-id h1s3
ssh-coyp-id h1s4
ssh-coyp-id h1s5


5. 安装zookeeper

 

5.1 下载安装zookeeper
下载地址:http://pan.baidu.com/s/1hq2BEBi
安装过程参考hadoop

5.2 配置zookeeper
添加一个zoo.cfg配置文件
# cd /usr/lib/zookeeper/conf
# mv zoo_sample.cfg zoo.cfg

修改配置文件(zoo.cfg)
dataDir=/usr/lib/zookeeper/data 
server.3=h1s1:2888:3888
server.4=h1s2:2888:3888
server.5=h1s3:2888:3888
server.6=h1s4:2888:3888
server.7=h1s5:2888:3888

在(/usr/lib/zookeeper/data)创建一个myid文件,里面内容是server.N中的N(server.3里面内容为3)
# echo "3" > myid

将配置好的zk拷贝到其他节点
# scp -r /usr/lib/zookeeper/ h1s2:/usr/lib/
# scp -r /usr/lib/zookeeper/ h1s3:/usr/lib/
# scp -r /usr/lib/zookeeper/ h1s4:/usr/lib/
# scp -r /usr/lib/zookeeper/ h1s5:/usr/lib/

注意:在其他节点上一定要修改myid的内容
在h1s2应该讲myid的内容改为4 (# echo "4" > myid)
在h1s3应该讲myid的内容改为5 (# echo "5" > myid)
在h1s4应该讲myid的内容改为6 (# echo "6" > myid)
在h1s5应该讲myid的内容改为7 (# echo "7" > myid)


6. 启动集群

 

6.1 启动zookeeper集群(分别在h1s1、h1s2、h1s3、h1s4、h1s5上启动zk)
# cd /usr/lib/zookeeper/bin/
# ./zkServer.sh start
# ./zkServer.sh status #查看状态:一个leader,四个follower

6.2 启动journalnode(分别在h1s1、h1s2、h1s3、h1s4、h1s5上执行)
# cd /usr/lib/hadoop
# sbin/hadoop-daemon.sh start journalnode #运行jps命令检验,h1s1、h1s2、h1s3、h1s4、h1s5上多了JournalNode进程

6.3 格式化HDFS
# hdfs namenode -format #在h1m1上执行命令:
# scp -r tmp/ h1m2:/usr/lib/hadoop/ #格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/usr/lib/hadoop/tmp,然后将/usr/lib/hadoop/tmp拷贝到h1m2的/usr/lib/hadoop/下。

6.4 格式化ZK(在h1m1上执行即可) 
# hdfs zkfc -formatZK 

6.5 启动HDFS(在h1m1上执行)
# sbin/start-dfs.sh
Hadoop2.6.0 + zookeeper集群环境搭建_第3张图片

6.6 启动YARN
在此我们是在h1m1上配置RM,所以在h1m1执行
# sbin/start-yarn.sh
Hadoop2.6.0 + zookeeper集群环境搭建_第4张图片
 
到此,hadoop-2.6.0配置完毕,可以统计浏览器访问:
http://h1m1:50070
NameNode 'h1m1:9000' (active)
http://h1m2:50070
NameNode 'h1m2:9000' (standby)


验证HDFS HA
首先向hdfs上传一个文件
hadoop fs -put /etc/profile /profile
hadoop fs -ls /


 然后再kill掉active的NameNode
kill -9
通过浏览器访问:http://h1m2:50070
NameNode 'h1m2:9000' (active)
这个时候h1m2上的NameNode变成了active


 在执行命令:
hadoop fs -ls /
-rw-r--r-- 3 root supergroup 1926 2015-05-14 15:36 /profile
刚才上传的文件依然存在!!!

 


 手动启动那个挂掉的NameNode
sbin/hadoop-daemon.sh start namenode
通过浏览器访问:http://h1m1:50070
NameNode 'h1m1:9000' (standby)

验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /profile /out

OK,大功告成!!!

你可能感兴趣的:(Hadoop2.6.0 + zookeeper集群环境搭建)