Size Balanced Tree(SBT) 类模板C++实现(持续更新)

       Size Balanced Tree是OI神犇陈启峰发明的,据说是目前最高效的二叉查找树,搞了好长时间终于弄出来了~这个版本的SBT本来是打算用来实现STL的set的,所以树中不存在两个键值一样的元素,当然改成multiset那样的也不是很麻烦~原本按自己的理解想设计自底向上调整的SBT,结果最后发现这样的SBT有很大的问题最简单的例子就是如果插入的数据是单调有序的,那么显然这棵SBT就会严重倾向一侧,所以必须是自顶向下调整~这次写SBT模板收获很大^_^~大家要是发现bug请留言哈~

被虐。。。重写+debug。。。

// =============================================================================
// 
//       Filename:  size_balanced_tree.h
// 
//    Description:  Size Balanced Tree
// 
//        Version:  1.1
//        Created:  03/29/2012 01:00:29 PM
//       Revision:  none
//       Compiler:  g++
// 
//         Author:  SphinX (Whisper), [email protected]
//        Company:  HFUT
// 
// =============================================================================

#ifndef SIZE_BALANCED_TREE
#define SIZE_BALANCED_TREE

#include 
#include 
#include "dsexceptions.h"
using std::cout;
using std::endl;

template 
class SizeBalancedTree
{
    private:

        struct SizeBalancedNode
        {
            T element;
            SizeBalancedNode * left;
            SizeBalancedNode * right;
            int node_size;

            SizeBalancedNode(const T & _element, 
                    SizeBalancedNode * lt, SizeBalancedNode * rt, int sz = 1)
                : element(_element), left(lt), right(rt), node_size(sz) {}
        };


    public:

        SizeBalancedTree()
        {
            root = NULL;
            tree_size = 0;
        }
        SizeBalancedTree(SizeBalancedTree & rhs)
        {
            this->root = clone(rhs.root);
            this->tree_size = rhs.size();
        }
        ~SizeBalancedTree()
        {
            clear();
        }

        const SizeBalancedTree & operator = (const SizeBalancedTree & rhs)
        {
            if (this != &rhs)
            {
                this->clear();
                this->root = clone(rhs.root);
                this->tree_size = rhs.tree_size;
            }
            return (*this);
        }

        int size() const
        {
            return tree_size;
        }
        bool empty() const
        {
            return size() == 0;
        }
        bool contains(const T & x) const
        {
            return contains(x, root);
        }
        const T & findMin() const
        {
            if (empty())
            {
                throw UnderflowException();
            }
            return findMin(root)->element;
        }
        const T & findMax() const
        {
            if (empty())
            {
                throw UnderflowException();
            }
            return findMax(root)->element;
        }
        int rank(const T & x) const
        {
            if (!contains(x))
            {
                return -1;
            }
            return rank(x, root);
        }
        const T & select(int _rank) const
        {
            if (_rank < 0)
            {
                throw UnderflowException();
            }
            if (_rank >= size())
            {
                throw OverflowException();
            }
            return select(_rank, root)->element;
        }
        void showTree() const
        {
            showTree(root);
            return ;
        }

        void clear()
        {
            clear(root);
            tree_size = 0;
            return ;
        }
        void insert(const T & x)
        {
            if (contains(x))
            {
                return ;
            }
            ++tree_size;
            insert(x, root);
            return ;
        }
        void remove(const T & x)
        {
            if (!contains(x))
            {
                return ;
            }
            --tree_size;
            remove(x, root);
            return ;
        }


    private:

        SizeBalancedNode * root;
        int tree_size;

        int getNodeSize(SizeBalancedNode * t) const
        {
            if (NULL == t)
            {
                return 0;
            }
            return t->node_size;
        }
        bool contains(const T & x, SizeBalancedNode * t) const
        {
            while (t != NULL)
            {
                if (x < t->element)
                {
                    t = t->left;
                }
                else if (t->element < x)
                {
                    t = t->right;
                }
                else
                {
                    return true;
                }
            }
            return false;
        }
        SizeBalancedNode * clone(SizeBalancedNode * t) const
        {
            if (NULL == t)
            {
                return NULL;
            }
            return new SizeBalancedNode(t->element, 
                clone(t->left), clone(t->right));
        }
        SizeBalancedNode * findMin(SizeBalancedNode * t) const
        {
            if (t != NULL)
            {
                while (t->left != NULL)
                {
                    t = t->left;
                }
            }
            return t;
        }
        SizeBalancedNode * findMax(SizeBalancedNode * t) const
        {
            if (t != NULL)
            {
                while (t->right != NULL)
                {
                    t = t->right;
                }
            }
            return t;
        }
        int rank(const T & x, SizeBalancedNode * t) const
        {
            int _rank = 0;
            while (t != NULL)
            {
                if (x < t->element)
                {
                    t = t->left;
                }
                else if (t->element < x)
                {
                    _rank += getNodeSize(t->left) + 1;
                    t = t->right;
                }
                else
                {
                    _rank += getNodeSize(t->left);
                    break ;
                }
            }
            return _rank;
        }
        SizeBalancedNode * select(int _rank, SizeBalancedNode * t) const
        {
            while (t != NULL)
            {
                if (_rank < getNodeSize(t->left))
                {
                    t = t->left;
                }
                else if (getNodeSize(t->left) < _rank)
                {
                    _rank -= getNodeSize(t->left) + 1;
                    t = t->right;
                }
                else
                {
                    break ;
                }
            }
            return t;
        }
        void showTree(SizeBalancedNode * t) const
        {
            if (t != NULL)
            {
                cout << "The element of this Node is " << t->element << endl;
                if (t->left != NULL)
                {
                    cout << "Walk into left child!" << endl;
                    showTree(t->left);
                    cout << "Walk back!" << endl;
                }
                cout << "The element of this Node is " << t->element << endl;
                if (t->right != NULL)
                {
                    cout << "Walk into right child!" << endl;
                    showTree(t->right);
                    cout << "Walk back!" << endl;
                }
            }
            return ;
        }

        void clear(SizeBalancedNode * & t)
        {
            if (t != NULL)
            {
                clear(t->left);
                clear(t->right);
                delete t;
                t = NULL;
            }
            return ;
        }
        void rotateWithLeft(SizeBalancedNode * & k2)
        {
            SizeBalancedNode * k1 = k2->left;
            k2->left = k1->right;
            k1->right = k2;
            k1->node_size = getNodeSize(k2);
            k2->node_size = getNodeSize(k2->left) + getNodeSize(k2->right) + 1;
            k2 = k1;
            return ;
        }
        void rotateWithRight(SizeBalancedNode * & k2)
        {
            SizeBalancedNode * k1 = k2->right;
            k2->right = k1->left;
            k1->left = k2;
            k1->node_size = getNodeSize(k2);
            k2->node_size = getNodeSize(k2->left) + getNodeSize(k2->right) + 1;
            k2 = k1;
            return ;
        }
        void doubleWithLeft(SizeBalancedNode * & t)
        {
            rotateWithRight(t->left);
            rotateWithLeft(t);
            return ;
        }
        void doubleWithRight(SizeBalancedNode * & t)
        {
            rotateWithLeft(t->right);
            rotateWithRight(t);
            return ;
        }
        void maintain(SizeBalancedNode * & t)   //Need to optimize...
        {
            if (t->left != NULL)
            {
                if (getNodeSize(t->right) < getNodeSize(t->left->left))
                {
                    rotateWithLeft(t);
                }
                else if (getNodeSize(t->right) < getNodeSize(t->left->right))
                {
                    doubleWithLeft(t);
                }
            }
            if (t->right != NULL)
            {
                if (getNodeSize(t->left) < getNodeSize(t->right->right))
                {
                    rotateWithRight(t);
                }
                else if (getNodeSize(t->left) < getNodeSize(t->right->left))
                {
                    doubleWithRight(t);
                }
            }
            if (t->left != NULL)
            {
                maintain(t->left);
            }
            if (t->right != NULL)
            {
                maintain(t->right);
            }
            return ;
        }
        void simpleInsert(const T & x, SizeBalancedNode * & t)
        {
            if (NULL == t)
            {
                t = new SizeBalancedNode(x, NULL, NULL);
                return ;
            }
            ++t->node_size;
            if (x < t->element)
            {
                simpleInsert(x, t->left);
            }
            else if (t->element < x)
            {
                simpleInsert(x, t->right);
            }
            return ;
        }
        void insert(const T & x, SizeBalancedNode * & t)
        {
            if (NULL == t)
            {
                t = new SizeBalancedNode(x, NULL, NULL);
                return ;
            }
            ++t->node_size;
            if (x < t->element)
            {
                simpleInsert(x, t->left);
            }
            else if (t->element < x)
            {
                simpleInsert(x, t->right);
            }
            else
            {
                return ;
            }
            maintain(t);
            return ;
        }
        void remove(const T & x, SizeBalancedNode * & t)
        {
            if (NULL == t)
            {
                return ;
            }
            --t->node_size;
            if (x < t->element)
            {
                remove(x, t->left);
            }
            else if (t->element < x)
            {
                remove(x, t->right);
            }
            else
            {
                if (t->left != NULL && t->right != NULL)
                {
                    if (getNodeSize(t->left) < getNodeSize(t->right))
                    {
                        t->element = findMin(t->right)->element;
                        remove(t->element, t->right);
                    }
                    else
                    {
                        t->element = findMax(t->left)->element;
                        remove(t->element, t->left);
                    }
                }
                else
                {
                    SizeBalancedNode * oldNode = t;
                    t = ((t->left != NULL) ? t->left : t->right);
                    delete oldNode;
                    oldNode = NULL;
                }
            }
            return ;
        }

};
/*
 *template 
 *const typename SizeBalancedTree::SizeBalancedNode *  SizeBalancedTree::nil
 *     = new SizeBalancedTree::SizeBalancedNode(T(), NULL, NULL, 0);
 */

#endif


你可能感兴趣的:(tree,c++,null,insert,compiler,delete,ACM-数据结构)