springcloud技术总览(1)

Spring Cloud 是一系列框架的有序集合。它利用 Spring Boot 的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用 Spring Boot 的开发风格做到一键启动和部署。Spring 并没有重复制造轮子,它只是将目前各家公司开发的比较成熟、经得起实际考验的服务框架组合起来,通过 Spring Boot 风格进行再封装屏蔽掉了复杂的配置和实现原理,最终给开发者留出了一套简单易懂、易部署和易维护的分布式系统开发工具包。

本文主要讲述我们为什么选择 Spring Cloud 和它的技术概览。

  • 服务治理:这是 Spring Cloud 的核心。目前 Spring Cloud 主要通过整合 Netflix 的相关产品来实现这方面的功能(Spring Cloud Netflix),包括用于服务注册和发现的 Eureka,调用断路器 Hystrix,调用端负载均衡 Ribbon,Rest 客户端 Feign,智能服务路由 Zuul,用于监控数据收集和展示的 Spectator、Servo、Atlas,用于配置读取的 Archaius 和提供 Controller 层 Reactive 封装的 RxJava。除此之外,针对于服务的注册和发现,除了 Eureka,Spring Cloud 也整合了 Consul 和 Zookeeper 作为备选,但是因为这两个方案在 CAP 理论上都遵循 CP 而不是 AP(下一篇会详细介绍这点),所以官方并没有推荐使用。

    Feign 和 RxJava 并不是 Netiflix 的产品,但是被整合到了 Spring Cloud Netflix 中。

  • 分布式链路监控:Spring Cloud Sleuth 提供了全自动、可配置的数据埋点,以收集微服务调用链路上的性能数据,并发送给 Zipkin 进行存储、统计和展示。
  • 消息组件:Spring Cloud Stream 对于分布式消息的各种需求进行了抽象,包括发布订阅、分组消费、消息分片等功能,实现了微服务之间的异步通信。Spring Cloud Stream 也集成了第三方的 RabbitMQ 和 Apache Kafka 作为消息队列的实现。而 Spring Cloud Bus 基于 Spring Cloud Stream,主要提供了服务间的事件通信(比如刷新配置)。
  • 配置中心:基于 Spring Cloud Netflix 和 Spring Cloud Bus,Spring 又提供了 Spring Cloud Config,实现了配置集中管理、动态刷新的配置中心概念。配置通过 Git 或者简单文件来存储,支持加解密。
  • 安全控制:Spring Cloud Security 基于 OAuth2 这个开放网络的安全标准,提供了微服务环境下的单点登录、资源授权、令牌管理等功能。
  • 命令行工具:Spring Cloud Cli 提供了以命令行和脚本的方式来管理微服务及 Spring Cloud 组件的方式。
  • 集群工具:Spring Cloud Cluster 提供了集群选主、分布式锁(暂未实现)、一次性令牌(暂未实现)等分布式集群需要的技术组件。

 

Eureka

Eureka 是 Netflix 开源的一款提供服务注册和发现的产品,它提供了完整的 Service Registry 和 Service Discovery 实现。也是 Spring Cloud 体系中最重要最核心的组件之一。

用大白话讲,Eureka 就是一个服务中心,将所有的可以提供的服务都注册到它这里来管理,其它各调用者需要的时候去注册中心获取,然后再进行调用,避免了服务之间的直接调用,方便后续的水平扩展、故障转移等。

当然服务中心这么重要的组件一但挂掉将会影响全部服务,因此需要搭建 Eureka 集群来保持高可用性,生产中建议最少两台。随着系统的流量不断增加,需要根据情况来扩展某个服务,Eureka 内部已经提供均衡负载的功能,只需要增加相应的服务端实例既可。那么在系统的运行期间某个实例挂了怎么办?Eureka 内容有一个心跳检测机制,如果某个实例在规定的时间内没有进行通讯则会自动被剔除掉,避免了某个实例挂掉而影响服务。

因此使用了 Eureka 就自动具有了注册中心、负载均衡、故障转移的功能。

Hystrix

在微服务架构中通常会有多个服务层调用,基础服务的故障可能会导致级联故障,进而造成整个系统不可用的情况,这种现象被称为服务雪崩效应。服务雪崩效应是一种因 “服务提供者” 的不可用导致 “服务消费者” 的不可用, 并将不可用逐渐放大的过程。

如下图所示:A 作为服务提供者,B 为 A 的服务消费者,C 和 D 是 B 的服务消费者。A 不可用引起了 B 的不可用,并将不可用像滚雪球一样放大到 C 和 D 时,雪崩效应就形成了。

在这种情况下就需要整个服务机构具有故障隔离的功能,避免某一个服务挂掉影响全局。在 Spring Cloud 中 Hystrix 组件就扮演这个角色。

Hystrix 会在某个服务连续调用 N 次不响应的情况下,立即通知调用端调用失败,避免调用端持续等待而影响了整体服务。Hystrix 间隔时间会再次检查此服务,如果服务恢复将继续提供服务。

Hystrix Dashboard 和 Turbine

当熔断发生的时候需要迅速的响应来解决问题,避免故障进一步扩散,那么对熔断的监控就变得非常重要。熔断的监控现在有两款工具:Hystrix-dashboard 和 Turbine

Hystrix-dashboard 是一款针对 Hystrix 进行实时监控的工具,通过 Hystrix Dashboard 我们可以直观地看到各 Hystrix Command 的请求响应时间, 请求成功率等数据。但是只使用 Hystrix Dashboard 的话, 你只能看到单个应用内的服务信息, 这明显不够. 我们需要一个工具能让我们汇总系统内多个服务的数据并显示到 Hystrix Dashboard 上, 这个工具就是 Turbine.
监控的效果图如下:

Spring Cloud Config

随着微服务不断的增多,每个微服务都有自己对应的配置文件。在研发过程中有测试环境、UAT 环境、生产环境,因此每个微服务又对应至少三个不同环境的配置文件。这么多的配置文件,如果需要修改某个公共服务的配置信息,如:缓存、数据库等,难免会产生混乱,这个时候就需要引入 Spring Cloud 另外一个组件:Spring Cloud Config。

Spring Cloud Config 是一个解决分布式系统的配置管理方案。它包含了 Client 和 Server 两个部分,Server 提供配置文件的存储、以接口的形式将配置文件的内容提供出去,Client 通过接口获取数据、并依据此数据初始化自己的应用。

其实就是 Server 端将所有的配置文件服务化,需要配置文件的服务实例去 Config Server 获取对应的数据。将所有的配置文件统一整理,避免了配置文件碎片化。配置中心 git 实例参考:配置中心 git 示例;

如果服务运行期间改变配置文件,服务是不会得到最新的配置信息,需要解决这个问题就需要引入 Refresh。可以在服务的运行期间重新加载配置文件,具体可以参考这篇文章:配置中心 svn 示例和 refresh

当所有的配置文件都存储在配置中心的时候,配置中心就成为了一个非常重要的组件。如果配置中心出现问题将会导致灾难性的后果,因此在生产中建议对配置中心做集群,来支持配置中心高可用性。

 

Spring Cloud Bus

上面的 Refresh 方案虽然可以解决单个微服务运行期间重载配置信息的问题,但是在真正的实践生产中,可能会有 N 多的服务需要更新配置,如果每次依靠手动 Refresh 将是一个巨大的工作量,这时候 Spring Cloud 提出了另外一个解决方案:Spring Cloud Bus

Spring Cloud Bus 通过轻量消息代理连接各个分布的节点。这会用在广播状态的变化(例如配置变化)或者其它的消息指令中。Spring Cloud Bus 的一个核心思想是通过分布式的启动器对 Spring Boot 应用进行扩展,也可以用来建立一个或多个应用之间的通信频道。目前唯一实现的方式是用 AMQP 消息代理作为通道。

Spring Cloud Bus 是轻量级的通讯组件,也可以用在其它类似的场景中。有了 Spring Cloud Bus 之后,当我们改变配置文件提交到版本库中时,会自动的触发对应实例的 Refresh,具体的工作流程如下:

 

Spring Cloud Zuul

在微服务架构模式下,后端服务的实例数一般是动态的,对于客户端而言很难发现动态改变的服务实例的访问地址信息。因此在基于微服务的项目中为了简化前端的调用逻辑,通常会引入 API Gateway 作为轻量级网关,同时 API Gateway 中也会实现相关的认证逻辑从而简化内部服务之间相互调用的复杂度。

Spring Cloud 体系中支持 API Gateway 落地的技术就是 Zuul。Spring Cloud Zuul 路由是微服务架构中不可或缺的一部分,提供动态路由,监控,弹性,安全等的边缘服务。Zuul 是 Netflix 出品的一个基于 JVM 路由和服务端的负载均衡器。

它的具体作用就是服务转发,接收并转发所有内外部的客户端调用。使用 Zuul 可以作为资源的统一访问入口,同时也可以在网关做一些权限校验等类似的功能。

链路跟踪

随着服务的越来越多,对调用链的分析会越来越复杂,如服务之间的调用关系、某个请求对应的调用链、调用之间消费的时间等,对这些信息进行监控就成为一个问题。在实际的使用中我们需要监控服务和服务之间通讯的各项指标,这些数据将是我们改进系统架构的主要依据。因此分布式的链路跟踪就变的非常重要,Spring Cloud 也给出了具体的解决方案:Spring Cloud Sleuth 和 Zipkin

Spring Cloud Sleuth 为服务之间调用提供链路追踪。通过 Sleuth 可以很清楚的了解到一个服务请求经过了哪些服务,每个服务处理花费了多长时间。从而让我们可以很方便的理清各微服务间的调用关系。

Zipkin 是 Twitter 的一个开源项目,允许开发者收集 Twitter 各个服务上的监控数据,并提供查询接口

分布式链路跟踪需要 Sleuth+Zipkin 结合来实现

总结

我们从整体上来看一下 Spring Cloud 各个组件如何来配套使用:

从上图可以看出 Spring Cloud 各个组件相互配合,合作支持了一套完整的微服务架构。

  • 其中 Eureka 负责服务的注册与发现,很好将各服务连接起来
  • Hystrix 负责监控服务之间的调用情况,连续多次失败进行熔断保护
  • Hystrix dashboard,Turbine 负责监控 Hystrix 的熔断情况,并给予图形化的展示
  • Spring Cloud Config 提供了统一的配置中心服务
  • 当配置文件发生变化的时候,Spring Cloud Bus 负责通知各服务去获取最新的配置信息
  • 所有对外的请求和服务,我们都通过 Zuul 来进行转发,起到 API 网关的作用
  • 最后我们使用 Sleuth+Zipkin 将所有的请求数据记录下来,方便我们进行后续分析

 

 

你可能感兴趣的:(Spring,Cloud)