Linux进程上下文切换(process context switch)

进程的上下文切换包括kernel stack切换,寄存器的切换,页表切换等等。本文基于Linux 3.10并只分析kernel stack和寄存器的切换。

kernel stack和寄存器的切换发生在context_swich()函数。其中输入参数prev指向当前进程,next指向目标进程。

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
static inline void
context_switch(struct rq *rq, struct task_struct *prev,
               struct task_struct *next)

函数在完成mm的切换后调用switch_to完成大部分工作。switch_to是一段汇编代码,内容如下。

/* Save restore flags to clear handle leaking NT */
#define switch_to(prev, next, last) \
        asm volatile(SAVE_CONTEXT                                         \
             "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
             "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
             "call __switch_to\n\t"                                       \
             "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
             __switch_canary                                              \
             "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
             "movq %%rax,%%rdi\n\t"                                       \
             "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"                 \
             "jnz   ret_from_fork\n\t"                                    \
             RESTORE_CONTEXT                                              \
             : "=a" (last)                                                \
               __switch_canary_oparam                                     \
             : [next] "S" (next), [prev] "D" (prev),                      \
               [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
               [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
               [_tif_fork] "i" (_TIF_FORK),                               \
               [thread_info] "i" (offsetof(struct task_struct, stack)),   \
               [current_task] "m" (current_task)                          \
               __switch_canary_iparam                                     \
             : "memory", "cc" __EXTRA_CLOBBER)
输入参数中rdi代表next,rdi代表prev。下面以进程A, B, C之间的切换分析switch_to的工作原理。

进程A切换至进程B

假设正在进行由进程A到进程B的切换。由于__EXTRA_CLOBBER和SAVE_CONTEXT的作用,当程序执行完SAVE_CONTEXT后,进程A的kernel stack应当如下所示。

-----------------------------------------------   <- rsp         rbp = rsi = B, rdi = A, rsi = B

register save for A except rsp/rdi/rsi

-----------------------------------------------   <- when switch_to runs

local data

-----------------------------------------------   <- when context_switch runs

之后rsp被保存到进程A的task_struct中,并且stack被切换为进程B的。最终进程B的寄存器也将从堆栈中恢复,完成进程切换。

进程C切换至进程A

当switch_to执行完SAVE_CONTEXT之后,进程C的kernel stack应如下所示。

-----------------------------------------------   <- rsp         rbp = rsi = A, rdi = C, rsi = A

register save for C except rsp/rdi/rsi

-----------------------------------------------   <- when switch_to runs

local data

-----------------------------------------------   <- when context_switch runs

在执行完stack swtich之后(即SAVE_CONTEXT之后的两行汇编),进程A的stack重新被load到rsp。当前kernel stack如下:

-----------------------------------------------   <- rsp         rbp = rsi = A, rdi = C, rsi = A

register save for A except rsp/rdi/rsi

-----------------------------------------------   <- when switch_to runs

local data

-----------------------------------------------   <- when context_switch runs

rdi被设置为__switch_to的返回值(rax),即进程C的task_struct地址。在_TIF_FORK标志未设置的情况下(只有当A是一个刚刚fork的子进程时该标志才会被设置),程序最终运行到RESTORE_CONTEXT。在运行完RESTORE_CONTEXT并自动恢复__EXTRA_CLOBBER中的寄存器后,kernel stack如下所示。可以看到进程A的所有寄存器都被正确恢复。注意rbp的值不会被callee改变,因此rsi最终在RESTORE_CONTEXT中恢复为A。

-----------------------------------------------   <- rsp         rdi = C, rsi = A

local data

-----------------------------------------------   <- when context_switch runs




你可能感兴趣的:(Linux)