tcp数据重传时间细节探秘及数据中心优化
(https://weibo.com/p/1001603821691477346388)
2015年3月18日 10:28 阅读 23990
在数据中心网络内,机器之间数据传输的往返时间(rtt)一般在10ms以内,为此调内部服务的超时时间一般会设置成50ms、200ms、500ms等,如果在传输过程中出现丢包,这样的服务超时时间,tcp层有机会发现并重传一次数据么?如果设置成200ms以内,答案是没有机会,原因是linux系统下第一次重传时间等于传输的往返时间上至少加上200ms的预测偏差值,即如果rtt值是7ms,第一次重传超时时间至少是207ms,这样如果对某个接口的超时时间设置成200ms以内, 即便是rtt时间很小,仍然无法容忍一次丢包,因为在tcp发现丢包之前,该接口已经超时了。
本文针对linux系统tcp数据包第一次重传时间的计算进行探究,结果会让人大吃一惊。提出的优化方法,理论上能够降低内部服务调用时延和出错量。
tcp发送数据包后,会设置一个定时器,到期后如果还没有收到对方的回复(ack),就会重传数据包。从发出数据包到第一次重传之间的间隔时间称为retransmission timeout(RTO),rto由数据包的往返时间(rtt)加上rtt的预测偏差(波动值)计算出来。
即 rto = srtt + rttvar,其中srtt是rtt的平滑值,而rttvar是波动值,代表可能的预测偏差。
接下来我们做一个试验。
先ping一下www.weibo.com,看一下数据包的往返时间,如下:
[xiaohong@localhost ~]$ ping www.weibo.com
PING www.weibo.com (123.125.104.197) 56(84) bytes of data.
64 bytes from 123.125.104.197: icmp_seq=1 ttl=55 time=3.65 ms
64 bytes from 123.125.104.197: icmp_seq=2 ttl=55 time=3.38 ms
64 bytes from 123.125.104.197: icmp_seq=3 ttl=55 time=4.34 ms
64 bytes from 123.125.104.197: icmp_seq=4 ttl=55 time=7.82 ms
再看一下tcp对到www.weibo.com的rtt相关数据,下面的命令是针对centos7(如果是以下的版本,运行的命令是ip route list tab cache)如下:
[xiaohong@localhost ~]$ sudo ip tcp_metrics
123.125.104.197 age 22.255sec rtt 7375us rttvar 7250us cwnd 10
由上面看出,平滑后的rtt值约为7ms,rttvar约为7ms,那按理说rto值应该是14ms左右,也就是等14ms后,如果没有收到对方的响应,就会重传数据。实际的情况会是这样么?
在一个命令窗口里,运行下面的命令:
[xiaohong@localhost ~]$ nc www.weibo.com 80
GET / HTTP/1.1
Host: www.weibo.com
Connection:
同时再开一个命令行窗口里,运行下面的命令:
[xiaohong@localhost iproute2-3.19.0]$ ss -eipn ‘( dport = :www )’
tcp ESTAB 0 0 10.209.80.111:56486 123.125.104.197:80 users:((“nc”,1713,3)) uid:1000 ino:14243 sk:ffff88002c992d00 <->
ts sack cubic wscale:0,7 rto:207 rtt:7.375/7.25 mss:1448 cwnd:10 send 15.7Mbps rcv_space:14600
从上面的结果可以看出,实际的rto值是207ms,相当于rtt值加上200ms,为什么呢?
下面从内核tcp源代码中分析原因。
设置超时时间的函数是tcp_set_rto,在net/ipv4/tcp_input.c中,如下:
static inline void tcp_set_rto(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
tcp_bound_rto(sk);
}
可以看出,重传的定时值isck_rto实际上是调用 __tcp_set_rto,接着看它的源码,这个在文件include/tcp/net/tcp.h中,如下:
static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
{
return (tp->srtt >> 3) + tp->rttvar;
}
为了避免浮点数运算,rtt乘以8保存在socket数据结构中,从代码可以确认:
icsk_rto = srtt + rttvar
而计算和影响srtt和rttvar的函数是tcp_rtt_estimator,在文件net/ipv4/tcp_input.c中,代码如下:
static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
{
struct tcp_sock *tp = tcp_sk(sk);
long m = mrtt; /* RTT */
/* The following amusing code comes from Jacobson's
* article in SIGCOMM '88. Note that rtt and mdev
* are scaled versions of rtt and mean deviation.
* This is designed to be as fast as possible
* m stands for "measurement".
*
* On a 1990 paper the rto value is changed to:
* RTO = rtt + 4 * mdev
*
* Funny. This algorithm seems to be very broken.
* These formulae increase RTO, when it should be decreased, increase
* too slowly, when it should be increased quickly, decrease too quickly
* etc. I guess in BSD RTO takes ONE value, so that it is absolutely
* does not matter how to _calculate_ it. Seems, it was trap
* that VJ failed to avoid. 8)
*/
if (m == 0)
m = 1;
if (tp->srtt != 0) {
m -= (tp->srtt >> 3); /* m is now error in rtt est */
tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
if (m < 0) {
m = -m; /* m is now abs(error) */
m -= (tp->mdev >> 2); /* similar update on mdev */
/* This is similar to one of Eifel findings.
* Eifel blocks mdev updates when rtt decreases.
* This solution is a bit different: we use finer gain
* for mdev in this case (alpha*beta).
* Like Eifel it also prevents growth of rto,
* but also it limits too fast rto decreases,
* happening in pure Eifel.
*/
if (m > 0)
m >>= 3;
} else {
m -= (tp->mdev >> 2); /* similar update on mdev */
}
tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
if (tp->mdev > tp->mdev_max) {
tp->mdev_max = tp->mdev;
if (tp->mdev_max > tp->rttvar)
tp->rttvar = tp->mdev_max;
}
if (after(tp->snd_una, tp->rtt_seq)) {
if (tp->mdev_max < tp->rttvar)
tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
tp->rtt_seq = tp->snd_nxt;
tp->mdev_max = tcp_rto_min(sk);
}
} else {
/* no previous measure. */
tp->srtt = m << 3; /* take the measured time to be rtt */
tp->mdev = m << 1; /* make sure rto = 3*rtt */
tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
tp->rtt_seq = tp->snd_nxt;
}
}
从上面的代码可以看出,srtt = 7/8 old srtt + 1/8 new rtt,这个跟RFC一致,没有啥可以说的。
获得第一个往返时间数据时(一般是建立连接完成时,对于客户端就是发出sync请求,收到服务端的回应时,而对于服务器端就是发出syc+ack后,收到客户端的ack时)的计算分析如下:
} else {
/* no previous measure. */
/* 以前没有rtt的数据,这是收到第一个rtt的样本数据的代码逻辑 */
/* m是本次的rtt值,乘以8保存到 srtt中 */
tp->srtt = m << 3; /* take the measured time to be rtt */
/* rtt的初始偏差值mdev是 2倍rtt值 */
tp->mdev = m << 1; /* make sure rto = 3*rtt */
/* 设置rttvar和rtt偏差的最大值mdev_max这两者的初始值 */
/* 2倍的rtt值,tcp_rto_min之间,那个大,就选那个 */
tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
tp->rtt_seq = tp->snd_nxt;
}
再看tcp_rto_min的代码,在文件include/net/tcp.h中:
static inline u32 tcp_rto_min(struct sock *sk)
{
struct dst_entry *dst = __sk_dst_get(sk);
u32 rto_min = TCP_RTO_MIN; /* 200ms */
if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
return rto_min;
}
结合起来看,如果第一个数据包往返时间在100ms以内,rtt预测初始的偏差值就固定为200ms,当数据包往返时间超过100ms,rtt预测偏差的初始值是2倍的rtt值,也就是说rttvar最小值是200ms。
接着分析计算和影响srtt和rttvar的函数是tcp_rtt_estimator的代码:
if (tp->mdev > tp->mdev_max) {
/* 跟踪rtt的偏差,记录偏差最大值mdev_max */
tp->mdev_max = tp->mdev;
if (tp->mdev_max > tp->rttvar) /* 偏差最大值大于 rttvar时,rttvar跟着变大 */
tp->rttvar = tp->mdev_max;
}
if (after(tp->snd_una, tp->rtt_seq)) {
/* 偏差最大值小于 rttvar时,rttvar也会相应减少 */
if (tp->mdev_max < tp->rttvar)
tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
tp->rtt_seq = tp->snd_nxt;
/* 每个发送周期结束,重置mdev_max为tcp_rto_min */
tp->mdev_max = tcp_rto_min(sk);
}
也就是说,rtt预测偏差值rttvar会跟着实际的rtt预测偏差值变化,如果波动变大,则跟着变大,反之,如果波动变小,也会跟着变小。但因为每个发送周期内,偏差的最大值会重置为tcp_rto_min,所以,rtt预测偏差值rttvar不会小于200ms。
那这200ms的限制,有啥简单的方法调整么?继续看tcp_rto_min的代码,前面也贴过,如下:
static inline u32 tcp_rto_min(struct sock *sk)
{
struct dst_entry *dst = __sk_dst_get(sk);
u32 rto_min = TCP_RTO_MIN; /* 200ms */
if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
return rto_min;
}
从上面的代码可以看出,如果对应的目标的路由表项中设置了rto_min值,则以设置的值为准。这可以通过netlink机制来修改,具体可以通过ip route命令,增加rto_min选项来完成。
分析完源代码,接着试验一下。
运行下面的命令修改成20ms:
sudo ip route add 123.125.104.197/32 via 10.209.83.254 rto_min 20
看以下修改后的结果:
[xiaohong@localhost ~]$ ip route list
default via 10.209.83.254 dev enp0s3 proto static metric 1024
10.209.80.0/22 dev enp0s3 proto kernel scope link src 10.209.80.111
123.125.104.197 via 10.209.83.254 dev enp0s3 rto_min lock 20ms
清除以下路由表的缓存,这样可以立即查看效果:
sudo ip tcp_metrics flush
再测试访问weibo.com:
[xiaohong@localhost ~]$ nc www.weibo.com 80
GET /
在另外的终端中确认一下结果:
[xiaohong@localhost iproute2-3.19.0]$ ss -eipn ‘( dport = :www )’
tcp ESTAB 0 0 10.209.80.111:56487 123.125.104.197:80 users:((“nc”,1786,3)) uid:1000 ino:14606 sk:ffff88002c992d00 <->
ts sack cubic wscale:0,7 rto:22 rtt:2/1 mss:1448 cwnd:10 send 57.9Mbps rcv_space:14600
可以看出,本次的rtt值是2ms,rto为22ms,即已经生效。
欢迎一起讨论,拍砖也可以。呵呵。