可以使用torch.nn
包来构建神经网络.
你已知道autograd
包,nn
包依赖autograd
包来定义模型并求导.一个nn.Module
包含各个层和一个faward(input)
方法,该方法返回output
.
例如,我们来看一下下面这个分类数字图像的网络.
这是一个简单的前馈神经网络。 从前面获取到输入的结果,从一层传递到另一层,最后输出最后结果。
一个典型的神经网络的训练过程是这样的:
weight = weight +learning_rate * gradient
我们先定义一个网络
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
Out:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
你只需定义forward
函数,backward
函数(计算梯度)在使用autograd
时自动为你创建.你可以在forward
函数中使用Tensor
的任何操作.
net.parameters()
返回模型需要学习的参数
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
Out:
10
torch.Size([6, 1, 5, 5])
尝试一个随机的3232的输入.注意:这个网络(LeNet)期望的输入大小是3232.如果使用MNIST数据集来训练这个网络,请把图片大小重新调整到32*32.
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
Out:
tensor([[-0.0233, 0.0159, -0.0249, 0.1413, 0.0663, 0.0297, -0.0940, -0.0135,
0.1003, -0.0559]], grad_fn=)
将所有参数的梯度缓存清零,然后进行随机梯度的的反向传播.
net.zero_grad()
out.backward(torch.randn(1, 10))
注意
torch.nn
只支持小批量输入,整个torch.nn
包都只支持小批量样本,而不支持单个样本
例如,nn.Conv2d
将接受一个4维的张量,每一维分别是nSamples x nChannels x Height x Width
如果你有单个样本,只需使用input.unsqueeze(0)
来添加其它的维数.
在继续之前,我们回顾一下到目前为止见过的所有类.
回顾
backward()
等的自动操作,也保存关于这个tensor的梯度.现在,我们包含了:
定义一个神经网络
处理输入和调用backward
剩下的内容:
计算损失值
更新神经网络的权值
一个损失函数接受一对(output, target)作为输入,计算一个值来估计网络的输出和目标值相差多少.
在nn包中有几种不同的损失函数.一个简单的损失函数是:nn.MSELoss
他计算输入和目标值之间的均方误差.
For example:
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
Out:
tensor(1.3389, grad_fn=)
现在,你反向跟踪loss
,使用它的.grad_fn
属性,你会看到向下面这样的一个计算图:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
所以, 当我们调用loss.backward()
,整个图关于损失被求导,图中requires_grad=True
的所有tensor将拥有.grad
变量来累计他们的梯度.
为了说明,我们反向跟踪几步:
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
Out:
为了反向传播误差,我们所需做的是调用loss.backward()
.你需要清除已存在的梯度,否则梯度将被累加到已存在的梯度.
现在,我们将调用loss.backward()
并查看conv1层的偏置项在反向传播前后的梯度.
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
Out:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0054, 0.0011, 0.0012, 0.0148, -0.0186, 0.0087])
现在我们已知道如何使用损失函数.
稍后阅读
神经网络包包含了各种用来构成深度神经网络构建块的模块和损失函数,一份完整的文档查看这里
唯一剩下的内容:
实践中最简单的更新规则是随机梯度下降(SGD).
weight = weight - learning_rate * gradient
我们可以使用简单的Python代码实现这个规则.
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
然而,当你使用神经网络时,你想要使用各种不同的更新规则,比如SGD,Nesterov-SGD,Adam, RMSPROP等.为了能做到这一点,我们构建了一个包torch.optim
实现了所有的这些规则.使用他们非常简单:
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
注意
观察如何使用
optimizer.zero_grad()
手动设置渐变缓冲区为零 。这是因为渐变是按反向传播
部分中的说明累积的。