细化算法通常和骨骼化、骨架化算法是相同的意思,也就是thin算法或者skeleton算法。虽然很多图像处理的教材上不是这么写的,具体原因可以看这篇论文,Louisa Lam, Seong-Whan Lee, Ching Y. Suen,“Thinning Methodologies-A Comprehensive Survey ”,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992 ,总结了几乎所有92年以前的经典细化算法。
函数:void cvThin( IplImage* src, IplImage* dst, int iterations=1)
功能:将IPL_DEPTH_8U型二值图像进行细化
参数:src,原始IPL_DEPTH_8U型二值图像
dst,目标存储空间,必须事先分配好,且和原图像大小类型一致
iterations,迭代次数
参考文献:T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984.
void cvThin( IplImage* src, IplImage* dst, int iterations=1)
{
CvSize size = cvGetSize(src);
cvCopy(src, dst);
int n = 0,i = 0,j = 0;
for(n=0; n1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7)
{
if(ap==1)
{
if(!(p2 && p4 && p6))
{
if(!(p4 && p6 && p8))
{
CV_IMAGE_ELEM(dst,byte,i,j)=0;
}
}
}
}
}
}
}
cvReleaseImage(&t_image);
t_image = cvCloneImage(dst);
for(i=0; i1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7)
{
if(ap==1)
{
if(p2*p4*p8==0)
{
if(p2*p6*p8==0)
{
CV_IMAGE_ELEM(dst, byte,i,j)=0;
}
}
}
}
}
}
}
cvReleaseImage(&t_image);
}
}
//使用举例
#include "cxcore.h"
#include "cv.h"
#include "highgui.h"
int main(int argc, char* argv[])
{
if(argc!=2)
{
return 0;
}
IplImage *pSrc = NULL,*pDst = NULL,*pTmp = NULL;
//传入一个灰度图像
pSrc = cvLoadImage(argv[1],CV_LOAD_IMAGE_GRAYSCALE);
if(!pSrc)
{
return 0;
}
pTmp = cvCloneImage(pSrc);
pDst = cvCreateImage(cvGetSize(pSrc),pSrc->depth,pSrc->nChannels);
cvZero(pDst);
cvThreshold(pSrc,pTmp,128,1,CV_THRESH_BINARY_INV);//做二值处理,将图像转换成0,1格式
//cvSaveImage("c://Threshold.bmp",pTmp,0);
cvThin(pTmp,pDst,8);//细化,通过修改iterations参数进一步细化
cvNamedWindow("src",1);
cvNamedWindow("dst",1);
cvShowImage("src",pSrc);
//将二值图像转换成灰度,以便显示
int i = 0,j = 0;
CvSize size = cvGetSize(pDst);
for(i=0; i