Java虚拟机学习笔记(三):垃圾收集器

垃圾收集器

我们讨论的收集器基于JDK1.7 Update14之后的HotSpot虚拟机,这个虚拟机包含的所有收集器如图:

Java虚拟机学习笔记(三):垃圾收集器_第1张图片

连线说明可以搭配使用

Serial收集器

Serial是最基本、发展历史最悠久的收集器,在JDK1.3之前是虚拟机新生代收集的唯一选择。Serial收集器是一个单线程的收集器,单线程的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束

以下是Serial/Serial Old收集器的运行过程:

Java虚拟机学习笔记(三):垃圾收集器_第2张图片

Serial收集器是虚拟机运行在Client模式下的默认新生代收集器。它有着优于其它收集器的地方:简单而高效(与其它收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率

ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样。

以下是ParNew收集器的运行过程:

Java虚拟机学习笔记(三):垃圾收集器_第3张图片

ParNew收集器除了多线程收集之外,其他的与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中新生代收集器,其中有一个与性能无关但很重要的原因是:除了Serial收集器之外,目前只有它能与CMS收集器配合工作。

CMS是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。在JDK1.5推出

从ParNew收集器开始,后面还会接触到几款并发和并行的收集器,这里我们先来介绍一下并行和并发的概念:

  • 并行:多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态
  • 并发:用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续执行,而垃圾收集程序运行于另一个CPU上

Parallel Scavenge收集器

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。其特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量

吞吐量是指CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小-XX:GCTimeRatio参数。

MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽可能地保证内存回收花费的时间不超过设定值。不过需要注意的是GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快,但是这也直接导致垃圾收集发生得更加频繁。简而言之,停顿时间的确在下降,但吞吐量也在下降

GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数

由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。除了上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量,这种调节方式称为GC自适应的调节策略。

自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别

Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

以下是Serial Old收集器的运行过程:

Java虚拟机学习笔记(三):垃圾收集器_第4张图片

Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器

以下是Parallel Old的运行流程:

Java虚拟机学习笔记(三):垃圾收集器_第5张图片

JDK1.6开始提供

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:

  • 初始标记
  • 并发标记
  • 重新标记
  • 并发清除

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。

初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快

并发标记阶段就是进行GC Roots Tracing的过程

重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

以下是CMS收集器的执行流程:

Java虚拟机学习笔记(三):垃圾收集器_第6张图片

优点:

  • 并发收集
  • 低停顿

缺点:

  1. CMS收集器对CPU资源非常敏感

    在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程会占用不少于25%的资源,并且随着CPU数量的增加而下降。

    那么问题来了,当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低50%。为了应付这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,它会在并发标记、清理的时候让GC线程、用户线程交替运行,尽量减少GC线程独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得少一些,也就是速度下降没有那么明显

  2. CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生

    浮动垃圾:在并发清理过程中产生的垃圾要下次GC才回收

    在JDK1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调用参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK1.6中,CMS收集器的启动阈值已经提升至92%。

    要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长

  3. CMS是一款基于“标记-清除”算法实现的收集器,所以收集结束时会有大量空间碎片产生

    空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。

    为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认是开启的),用于在CMS收集器顶不住要进行Full GC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。

    虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,它用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,即每次进入Full GC时都进行碎片整理)

G1收集器

G1收集器是一款面向服务端应用的垃圾收集器。与其它GC收集器相比,G1具备如下特点:

  • 并发和并行:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop The World停顿的时间,部分其它收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行
  • 分代收集:虽然G1可以不需要其它收集器配合就能独立管理整个GC堆,但G1中仍然保留了分代的概念,它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象
  • 空间整合:G1从整体上看是基于“标记-整理”算法实现的,从局部上看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。
  • 可预测的停顿:G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java的垃圾收集器的特征了

在G1之前的其它收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其它收集器有很大差别,他将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合

G1之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region

在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代中就是检查是否老年代中的对象引用了新生代的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根结点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

初始标记仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一个阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。

并发标记是从GC Roots开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。

最终标记是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。

筛选回收首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划。

以下是G1收集器的执行流程:

Java虚拟机学习笔记(三):垃圾收集器_第7张图片

垃圾收集器参数总结

参数 描述
UseSerialGC 虚拟机运行在Client模式下的默认值,打开此开关后,使用Serial+Serial Old的收集器组合进行内存回收
UseParNewGC 打开此开关后,使用ParNew+Serial Old的收集器组合进行内存回收
UseConcMarkSweepGC 打开此开关后,使用ParNew+CMS+Serial Old的收集器组合进行内存回收。Serial Old收集器将作为CMS收集器出现Concurrent Mode Failure失败后的后备收集器使用
UseParallelGC 虚拟机运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge +Serial Old的收集器组合进行内存回收
UseParallelOldGC 打开此开关后,使用Parallel Scavenge+Parallel Old的收集器组合进行内存回收
SurvivorRatio 新生代中Eden区域与Survivor区域的容量比值,默认为8,代表Eden:Survivor=8:1
PretenureSizeThreshold 直接晋升到老年代的对象大小,设置这个参数后,大于这个参数的对象将直接在老年代分配
MaxTenuringThreshold 晋升到老年代的对象年龄。每个对象在坚持过一次Minor GC之后,年龄就加1,当超过这个参数值时就进入老年代
UseAdaptiveSizePolicy 动态调整Java堆中各个区域的大小以及进入老年代的年龄
HandlePromotionFailure 是否允许分配担保失败,即老年代的剩余空间不足以应付新生代的整个Eden和Survivor区的所有对象都存活的极端情况
ParallelGCThreads 设置并行GC时进行内存回收的线程数
GCTimeRatio GC时间占总时间的比率,默认值为99,即允许1%的GC时间。仅在使用Parallel Scavenge收集器时生效
MaxGCPauseMillis 设置GC的最大停顿时间。仅在使用Parallel Scavenge收集器时生效
CMSInitiatingOccupancyFraction 设置CMS收集器在老年代空间被使用多少后触发垃圾收集。默认为68%,仅在使用CMS收集器时生效
UseCMSConpactAtFullCollection 设置CMS收集器在完成垃圾收集后是否要进行一次内存碎片整理。仅在使用CMS收集器时生效
CMSFullGCsBeforeCompaction 设置CMS收集器在进行若干次垃圾收集后再启动一次内存碎片整理。仅在使用CMS收集器时生效

你可能感兴趣的:(Java虚拟机)