JDK源码中的跳表实现类: ConcurrentSkipListMap和ConcurrentSkipListSet。其中ConcurrentSkipListSet的实现是基于ConcurrentSkipListMap。因此下面具体分析ConcurrentSkipListMap的实现:
//查找指定Key的前置节点 private NodefindPredecessor(Object key, Comparator super K> cmp) { if (key == null) throw new NullPointerException(); // don't postpone errors for (;;) { for (Index q = head, r = q.right, d;;) { if (r != null) { Node n = r.node; K k = n.key; if (n.value == null) { if (!q.unlink(r)) // 如果节点r=q.right为空,则删除该节点r,即把节点q.right指向r.right. break; // restart 然后跳出本次循环,从头节点开始继续循环。 r = q.right; // reread r continue; } if (cpr(cmp, key, k) > 0) {// 通过Key值于当前节点的right节点比较,如果Key值较大,则继续往右比较 q = r; r = r.right; continue; } } if ((d = q.down) == null) // 如果当前节点的down为空,则当前链表为最底层链表,该节点的值<=key,此即为查询结果。 return q.node; q = d; // 如果Key值不比当前节点的right节点大,则继续往下比较 r = d.right; } } } // 根据Key查找对应的节点 private Node findNode(Object key) { if (key == null) throw new NullPointerException(); // don't postpone errors Comparator super K> cmp = comparator; outer: for (;;) { for (Node b = findPredecessor(key, cmp), n = b.next;;) {//从key的前置节点开始查找 Object v; int c; if (n == null) break outer; Node f = n.next; if (n != b.next) // inconsistent read 读写不一致,重新开始查找 break; if ((v = n.value) == null) { // n is deleted 下一个节点为null,则删除该节点,重新开始查找 n.helpDelete(b, f); break; } if (b.value == null || v == n) // b is deleted break; if ((c = cpr(cmp, key, n.key)) == 0) //查找到,则返回结果 return n; if (c < 0) break outer; b = n; n = f; } } return null; } private V doGet(Object key) 方法的实现于findNode一致,只是返回值为Value的复制。 /** * * Main insertion method. Adds element if not present, or * replaces value if present and onlyIfAbsent is false. * @param key the key * @param value the value that must be associated with key * @param onlyIfAbsent if should not insert if already present * @return the old value, or null if newly inserted * 新增一个节点过程: * 1,根据新增的节点key值,寻找其合适的插入位置b; * 2,如果存在相等的key值,则根据onlyIfAbsent决定是否更新对应的Value值,然后返回; * 3,如果不存在相等的key值,则创建一个新的节点,并插入到合适的位置b,此时操作的是跳表的最底层; * 4,根据随机函数,决定是否添加上层节点,如果不需要添加,则直接返回null; * 5,如果需要添加上层节点,则获取随机值level; * 6,如果随机值level不大于当前最大层数,则创建一个从第一层到第level层的新的节点Index链表,其通过down指针连接,right指针都设置为null; * 7,如果随机值level大于当前最大层数,则跳表的最大层数加1,然后创建一个从第一层到新的最大层的新的节点Index链表,其通过down指针连接,right指针都设置 * 为null;然后从旧的最大层数+1到新的最大层数间新增head节点链表,其通过down指针连接,right指针指向刚新增的对应层的Index节点; * 8,从旧的最大层数开始往最底层,把新增的index节点插入到合适的位置,即更新其right指针(完善第6步的操作)。至此,完成新增节点的整个过程。 */ private V doPut(K key, V value, boolean onlyIfAbsent) { Node z; // added node if (key == null) throw new NullPointerException(); Comparator super K> cmp = comparator; outer: for (;;) { for (Node b = findPredecessor(key, cmp), n = b.next;;) {// 根据Key找到前置节点,然后开始查找 if (n != null) { Object v; int c; Node f = n.next; if (n != b.next) // inconsistent read break; if ((v = n.value) == null) { // n is deleted n.helpDelete(b, f); break; } if (b.value == null || v == n) // b is deleted break; if ((c = cpr(cmp, key, n.key)) > 0) { //继续往右查找 b = n; n = f; continue; } if (c == 0) { if (onlyIfAbsent || n.casValue(v, value)) {//如果存在key相等的节点,则如果onlyIfAbsent=false,则通过casValue更新Key对应的Value值。如果onlyIfAbsent=true,则不更新Key对应的Value值,然后返回oldValue。 @SuppressWarnings("unchecked") V vv = (V)v; return vv; } break; // restart if lost race to replace value } // else c < 0; fall through } z = new Node (key, value, n); // 没有查找到对应的Key节点,则新增一个节点 if (!b.casNext(n, z)) // 把新增的节点z设为当前节点的next节点;原子操作,失败则不断的循环操作 break; // restart if lost race to append to b break outer; } } int rnd = ThreadLocalRandom.nextSecondarySeed(); if ((rnd & 0x80000001) == 0) { // test highest and lowest bits //8000000001 = 1000 0000 0000 0000 0000 0000 0000 0001 测试最高位和最低位是否为0 int level = 1, max; while (((rnd >>>= 1) & 1) != 0) //无符号右移1位, 随机获得level值 ++level; Index idx = null; HeadIndex h = head; if (level <= (max = h.level)) { for (int i = 1; i <= level; ++i) idx = new Index (z, idx, null); } else { // try to grow by one level 使整个跳表的level增长1 level = max + 1; // hold in array and later pick the one to use @SuppressWarnings("unchecked")Index [] idxs = (Index [])new Index,?>[level+1]; for (int i = 1; i <= level; ++i) idxs[i] = idx = new Index (z, idx, null); //idx = new Index (z,idx,null); 设置idx值,并设置其down和right值 //idxs[i] = idx; 设置每一层中新增的Index节点,其right值都设为null,down值设置为其下一层的Index节点。 for (;;) { h = head; int oldLevel = h.level; if (level <= oldLevel) // lost race to add level break; HeadIndex newh = h; Node oldbase = h.node; for (int j = oldLevel+1; j <= level; ++j) //设置新增的Head节点,设置其node,down,right和level值 newh = new HeadIndex (oldbase, newh, idxs[j], j); if (casHead(h, newh)) { //更新head值成功,则退出无限循环 h = newh; //h 为新的跳表的head节点 idx = idxs[level = oldLevel]; //新增的层中,包含Head和idxs[max]两个节点,其指向关系已经确定,而oldLevel中,还没有设置idxs[level]的前置节点,因此idx = idxs[level = oldLevel],说明需要从此层开始至最底层,设置好idxs[level]的前置节点,下面的代码splice完成该功能。 break; } } } // find insertion points and splice in splice: for (int insertionLevel = level;;) { int j = h.level; for (Index q = h, r = q.right, t = idx;;) { if (q == null || t == null) break splice; if (r != null) { Node n = r.node; // compare before deletion check avoids needing recheck int c = cpr(cmp, key, n.key);//key 根当前node.key比较 if (n.value == null) { if (!q.unlink(r)) break; r = q.right; continue; } if (c > 0) { //继续往右查找 q = r; r = r.right; continue; } } if (j == insertionLevel) { if (!q.link(r, t)) // 把节点t插入到q和r之间,t即新增的节点idx[level] break; // restart if (t.node.value == null) { findNode(key); break splice; } if (--insertionLevel == 0)//层数往下,如果已到最底层,则退出,最底层的节点值在之前的代码中已经完成插入。 break splice; } if (--j >= insertionLevel && j < level) t = t.down; //t值更新,t即新增的节点idx[level] q = q.down; r = q.right; } } } return null; } /** * Main deletion method. Locates node, nulls value, appends a * deletion marker, unlinks predecessor, removes associated index * nodes, and possibly reduces head index level. * * Index nodes are cleared out simply by calling findPredecessor. * which unlinks indexes to deleted nodes found along path to key, * which will include the indexes to this node. This is done * unconditionally. We can't check beforehand whether there are * index nodes because it might be the case that some or all * indexes hadn't been inserted yet for this node during initial * search for it, and we'd like to ensure lack of garbage * retention, so must call to be sure. * * @param key the key * @param value if non-null, the value that must be * associated with key * @return the node, or null if not found */ final V doRemove(Object key, Object value) { if (key == null) throw new NullPointerException(); Comparator super K> cmp = comparator; outer: for (;;) { for (Node b = findPredecessor(key, cmp), n = b.next;;) { Object v; int c; if (n == null) break outer; Node f = n.next; if (n != b.next) // inconsistent read break; if ((v = n.value) == null) { // n is deleted n.helpDelete(b, f); break; } if (b.value == null || v == n) // b is deleted break; if ((c = cpr(cmp, key, n.key)) < 0) break outer; if (c > 0) { b = n; n = f; continue; } if (value != null && !value.equals(v)) //如果value不相等,退出 break outer; if (!n.casValue(v, null)) //无限循环,直至设置节点的值为null成功, break; //之前已经把当前节点值设为null,之后的删除操作分两步:1,在n和n.next间插入一个删除标记节点 //marker; 2,设置b.next为f;这是由两个原子操作共同完成,如果都正常完成,则直接返回;如果有其中一步失败, //则调用findNode(key)来继续完成删除null节点的操作; if (!n.appendMarker(f) || !b.casNext(n, f)) findNode(key); // retry via findNode else { . findPredecessor(key, cmp); // clean index if (head.right == null) tryReduceLevel(); //最上面三层都无索引节点,则把最上面一层的索引删除。 } @SuppressWarnings("unchecked") V vv = (V)v; return vv; } } return null; } /** * 添加一个删除标记节点,设置当前节点的next节点为new Node(f),该新增节点的value值为当前节点f.value=f; * Tries to append a deletion marker to this node. * @param f the assumed current successor of this node * @return true if successful */ boolean appendMarker(Node f) { return casNext(f, new Node (f)); } Node(Node next) { this.key = null; this.value = this; this.next = next; } /** * compareAndSet next field */ boolean casNext(Node cmp, Node val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } /** * 继续完成删除节点过程: * Helps out a deletion by appending marker or unlinking from * predecessor. This is called during traversals when value * field seen to be null. * @param b predecessor * @param f successor */ void helpDelete(Node b, Node f) { /* * Rechecking links and then doing only one of the * help-out stages per call tends to minimize CAS * interference among helping threads. */ if (f == next && this == b.next) { if (f == null || f.value != f) // not already marked 判断是否为marker节点(f.value=f) casNext(f, new Node (f)); else b.casNext(this, f.next); } }
删除步骤:
1, 删除前,需要删除节点n:
2,删除时,先设置n.value= null; 无限循环,直至成功为止;
3,添加删除标记节点marker:
marker 节点的key=null, value=f, next=f;
4,删除该节点n以及标记节点marker:
其中步骤2,3,4分别由3个CAS原子操作完成。步骤2保证成功,步骤3或者4只要有一个失败,此时的n.value = null, 因此都可以由节点遍历的操作来继续推进删除过程。
为什么删除操作要分为3步,而不是由一个步骤(步骤4)来完成?因为CAS操作只能保证一个变量操作的原子性。