YOLOv1学习整理

一、 背景介绍

  • 三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的特性对比分析
    https://blog.csdn.net/cy513/article/details/4285579
  • 图像处理之Haar特征
    https://blog.csdn.net/u012507022/article/details/54138299
  • 哈尔小波变换的原理及其实现(Haar)
    https://blog.csdn.net/victory06057231/article/details/6708330
  • DPM(Deformable Part Model)原理详解
    https://blog.csdn.net/qq_14845119/article/details/52625426
  • DPM(Deformable Parts Models)-----目标检测算法理解
    https://blog.csdn.net/qq_22625309/article/details/72493223
  • HOG特征(Histogram of Gradient)学习总结
    https://www.cnblogs.com/wyuzl/p/6792216.html
    • 直方图(histogram)中的bins应如何理解
      https://blog.csdn.net/u011776903/article/details/74637080
    • 多尺度与多分辨率的理解
      https://blog.csdn.net/u013360881/article/details/43452057
    • 什么是图像金字塔
    • https://www.jianshu.com/p/cefbdc2dc5b9*
    • 图像金字塔总结
      https://blog.csdn.net/xiamentingtao/article/details/78596240
  • 尺度不变特征变换匹配算法详解(暂未阅读)
    https://blog.csdn.net/chezhai/article/details/66044054?utm_source=copy
  • 提高目标检测精度的常用方法(含部分代码)
    https://zhuanlan.zhihu.com/p/42946589
  • NMS——非极大值抑制
    https://blog.csdn.net/shuzfan/article/details/52711706
  • 非极大值抑制(Non-Maximum Suppression,NMS)
    https://www.cnblogs.com/makefile/p/nms.html
    代码实现:
    https://blog.csdn.net/williamyi96/article/details/77996167
    https://www.cnblogs.com/makefile/p/nms.html
  • 目标检测中region proposal的作用?
    https://www.zhihu.com/question/265345106

二、YOLO

  • 目标检测|YOLO原理与实现
    https://zhuanlan.zhihu.com/p/32525231
  • YOLO
    https://blog.csdn.net/guoyunfei20/article/details/78744753
  • [目标检测]YOLO原理
    https://www.cnblogs.com/fariver/p/7446921.html
  • YOLO配置文件理解
    https://blog.csdn.net/hrsstudy/article/details/65447947
  • Yolo-实时目标检测算法训练自己的数据集教程
    https://www.jianshu.com/p/c1a009385f59
  • yolo的训练和测试
    https://blog.csdn.net/qq_30401249/article/details/51564871

你可能感兴趣的:(目标检测)