《深入理解java虚拟机》-第3章-垃圾收集器与内存分配策略

3.1 概述

哪些内存需要回收?什么时候回收?如何回收?

java堆和方法区不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存。我们讨论的“内存”分配与回收也仅指着一部分内存。

3.2 对象已死吗

3.2.1 引用计数算法

给对象添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

引用计数算法的缺陷;

public class ReferenceCountingGC {
	public Object instance = null;

	public static void testGC() {
		ReferenceCountingGC objA = new ReferenceCountingGC();
		ReferenceCountingGC objB = new ReferenceCountingGC();
		objA.instance = objB;
		objB.instance = objA;
		objA = null;
		objB = null;
	}
}
对象objA和objB都有字段instance,赋值令objA.instance=objB及objB.instance=objA,除此之外,这两个对象再无任何引用,实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为0,于是引用计数算法无法通知GC收集器回收它们。

3.2.2 可达性分析算法

在主流的商用程序语言(Java、 C#,甚至包括前面提到的古老的Lisp)的主流实现中,都是称通过可达性分析(Reachability Analysis)来判定对象是否存活的。 这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。 如图3-1所示,对象object 5、 object 6、 object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。

《深入理解java虚拟机》-第3章-垃圾收集器与内存分配策略_第1张图片

在Java语言中,可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象。
  • 方法区中类静态属性引用的对象。
  • 方法区中常量引用的对象。
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象。

3.2.3 再谈引用

Java将引用分为强引用(StrongReference)、 软引用(Soft Reference)、 弱引用(Weak Reference)、 虚引用(PhantomReference)4种,这4种引用强度依次逐渐减弱。强引用就是指在程序代码之中普遍存在的,类似“Object obj=new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。

软引用是用来描述一些还有用但并非必需的对象。 对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。 如果这次回收还没有足够的内存,才会抛出内存溢出异常。 在JDK 1.2之后,提供了SoftReference类来实现软引用。
弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。 当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。 在JDK 1.2之后,提供了WeakReference类来实现弱引用。
虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 在JDK 1.2之后,提供了PhantomReference类来实现虚引用

3.2.5 回收方法区

方法区(或者HotSpot虚拟机中的永久代)的垃圾收集主要回收两部分内容: 废弃常量和无用的类
判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。 类需要同时满足下面3个条件才
能算是“无用的类”:
1.该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。
2.加载该类的ClassLoader已经被回收。
3.该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

3.3 垃圾收集算法

3.3.1 标记-清除算法

最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象,它的标记过程其实在前一节讲述对象标记判定时已经介绍过了。 之所以说它是最基础的收集算法,是因为 后续的收集算法都是基于这种思路并对其不足进行改进而得到的。 它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

3.3.2 复制算法(针对新生代)

为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。 当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。 这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。 只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。
现在的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[1]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。 当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。
内存的分配担保就好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有风险了。 内存的分配担保也一样,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象时,这些对象将直接通过分配担保机制进入老年代。 关于对新生代进行分配担保的内容,在本章稍后在讲解垃圾收集器执行规则时还会再详细讲解。

3.3.3 标记-整理算法(针对老年代)

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。 更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,“标记-整理”算法的示意图如图3-4所示。

3.3.4 分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。 一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。 在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。 而老年代中因为对象存活率高、 没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

3.4 HotSpot的算法实现

3.2 节和3.3节从理论上介绍了对象存活判定算法和垃圾收集算法,而在HotSpot虚拟机上实现这些算法时,必须对算法的执行效率有严格的考量,才能保证虚拟机高效运行。

3.4.1 枚举根节点

从可达性分析中从GC Roots节点找引用链这个操作为例,可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。
另外,可达性分析对执行时间的敏感还体现在GC停顿上,因为这项分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。 这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop The World”)的其中一个重要原因,即使是在号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。
由于目前的主流Java虚拟机使用的都是准确式GC(这个概念在第1章介绍Exact VM对Classic VM的改进时讲过),所以当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。 在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。 这样,GC在扫描时就可以直接得知这些信息了。 下面的代码清单3-3是HotSpot Client VM生成的一段String.hashCode()方法的本地代码,可以看到在0x026eb7a9处的call指令有OopMap记录,它指明了EBX寄存器和栈中偏移量为16的内存区域中各有一个普通对象指针(Ordinary Object Pointer)的引用,有效范围为从call指令开始直到0x026eb730(指令流的起始位置)+142(OopMap记录的偏移量)=0x026eb7be,即hlt指令为止。

3.4.2 安全点

在OopMap的协助下,HotSpot可以快速且准确地完成GCRoots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。

实际上,HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。 Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、 异常跳转等,所以具有这些功能的指令才会产生Safepoint。

对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension),其中抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。而主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。下面代码清单3-4中的test指令是HotSpot生成的轮询指令,当需要暂停线程时,虚拟机把0x160100的内存页设置为不可读,线程执行到test指令时就会产生一个自陷异常信号,在预先注册的异常处理器中暂停线程实现等待,这样一条汇编指令便完成安全点轮询和触发线程中断。

3.4.3 安全区域

使用Safepoint似乎已经完美地解决了如何进入GC的问题,但实际情况却并不一定。Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段之中,引用关系不会发生变化。 在这个区域中的任意地方开始GC都是安全的。 我们也可以把Safe Region看做是被扩展了的Safepoint。

在线程执行到SafeRegion中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

到此,笔者简要地介绍了HotSpot虚拟机如何去发起内存回收的问题,但是虚拟机如何具体地进行内存回收动作仍然未涉及,因为内存回收如何进行是由虚拟机所采用的GC收集器决定的,而通常虚拟机中往往不止有一种GC收集器。下面继续来看HotSpot中有哪些GC收集器。

3.5 垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。 Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并且一般都会提供参数供用户根据自己的应用特点和要求组合出各个年代所使用的收集器。这里讨论的收集器基于JDK 1.7 Update 14之后的HotSpot虚拟机(在这个版本中正式提供了商用的G1收集器,之前G1仍处于实验状态),这个虚拟机包含的所有收集器如图3-5所示

在介绍这些收集器各自的特性之前,我们先来明确一个观点:虽然我们是在对各个收集器进行比较,但并非为了挑选出一个最好的收集器。

因为直到现在为止还没有最好的收集器出现,更加没有万能的收集器,所以我们选择的只是对具体应用最合适的收集器。这点不需要多加解释就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,那HotSpot虚拟机就没必要实现那么多不同的收集器了。

3.5.1 Serial收集器

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。大家看名字就会知道,这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。“StopThe World”这个名字也许听起来很酷,但这项工作实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说都是难以接受的。

读者不妨试想一下,要是你的计算机每运行一个小时就会暂停响应5分钟,你会有什么样的心情?图3-6示意了Serial/Serial Old收集器的运行过程。

对于“Stop TheWorld”带给用户的不良体验,虚拟机的设计者们表示完全理解,但也表示非常委屈:“你妈妈在给你打扫房间的时候,肯定也会让你老老实实地在椅子上或者房间外待着,如果她一边打扫,你一边乱扔纸屑,这房间还能打扫完?”这确实是一个合情合理的矛盾,虽然垃圾收集这项工作听起来和打扫房间属于一个性质的,但实际上肯定还要比打扫房间复杂得多啊!

从JDK 1.3开始,一直到现在最新的JDK1.7,HotSpot虚拟机开发团队为消除或者减少工作线程因内存回收而导致停顿的努力一直在进行着,从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)乃至GC收集器的最前沿成果Garbage First(G1)收集器,我们看到了一个个越来越优秀(也越来越复杂)的收集器的出现,用户线程的停顿时间在不断缩短,但是仍然没有办法完全消除(这里暂不包括RTSJ中的收集器)。寻找更优秀的垃圾收集器的工作仍在继续!

写到这里,笔者似乎已经把Serial收集器描述成一个“老而无用、 食之无味弃之可惜”的鸡肋了,但实际上到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

3.5.2 ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、 -XX:PretenureSizeThreshold、 -XX:HandlePromotionFailure等)、收集算法、 Stop The World、对象分配规则、 回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。 ParNew收集器的工作过程如图3-7所示。

ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器(Concurrent Mark Sweep,本节稍后将详细介绍这款收集器),这款收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作,用前面那个例子的话来说,就是做到了在你的妈妈打扫房间的时候你还能一边往地上扔纸屑。

不幸的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 1.5中使用

CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。 ParNew收集器也是使用-XX:+UseConcMarkSweepGC选项后的

默认新生代收集器,也可以使用-XX:+UseParNewGC选项来强制指定它。

ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄就4核加超线程,服务器超过32个逻辑

CPU的情况越来越多了)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

注意 从ParNew收集器开始,后面还会接触到几款并发和并行的收集器。 在大家可能产生疑惑之前,有必要先解释两个名词:并发和并行。

这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,它们可以解释如下。

●并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

●并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

3.5.3 Parallel Scavenge收集器

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器……看上去和ParNew都一样,那它有什么特别之处呢?

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高

吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

你可能感兴趣的:(JVM)