字典树(Trie树):应用于统计和排序

  1.Trie树 (特例结构树)  
      Trie树,又称单词查找树、字典树,是一种树形结构,是一种哈希树的变种,是一种用于快速检索的多叉树结构。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。
     Trie的核心思想是空间换时间。利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。
     Trie树也有它的缺点,Trie树的内存消耗非常大.当然,或许用左儿子右兄弟的方法建树的话,可能会好点.
2.  三个基本特性:  
1)根节点不包含字符,除根节点外每一个节点都只包含一个字符。  
2)从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。 
3)每个节点的所有子节点包含的字符都不相同。
3 .例子
       和二叉查找树不同,在trie树中,每个结点上并非存储一个元素。
       trie树把要查找的关键词看作一个字符序列。并根据构成关键词字符的先后顺序构造用于检索的树结构。
       在trie树上进行检索类似于查阅英语词典。
      一棵m度的trie树或者为空,或者由m棵m度的trie树构成。
     例如,电子英文词典,为了方便用户快速检索英语单词,可以建立一棵trie树。例如词典由下面的单词成:a、b、c、aa、ab、ac、ba、ca、aba、abc、baa、bab、bac、cab、abba、baba、caba、abaca、caaba

字典树(Trie树):应用于统计和排序_第1张图片

           再举一个例子。给出一组单词,inn, int, at, age, adv, ant, 我们可以得到下面的Trie:

字典树(Trie树):应用于统计和排序_第2张图片        


        可以看出:

每条边对应一个字母。
每个节点对应一项前缀。叶节点对应最长前缀,即单词本身。
单词inn与单词int有共同的前缀“in”, 因此他们共享左边的一条分支,root->i->in。同理,ate, age, adv, 和ant共享前缀"a",所以他们共享从根节点到节点"a"的边。
查询操纵非常简单。比如要查找int,顺着路径i -> in -> int就找到了。

 2. trie树的实现

1.插入过程
对于一个单词,从根开始,沿着单词的各个字母所对应的树中的节点分支向下走,直到单词遍历完,将最后的节点标记为红色,表示该单词已插入trie树。

2. 查找过程
其方法为:

(1) 从根结点开始一次搜索;

(2) 取得要查找关键词的第一个字母,并根据该字母选择对应的子树并转到该子树继续进行检索;

(3) 在相应的子树上,取得要查找关键词的第二个字母,并进一步选择对应的子树进行检索。
(4) 迭代过程……
(5) 在某个结点处,关键词的所有字母已被取出,则读取附在该结点上的信息,即完成查找。其他操作类似处理.
       即从根开始按照单词的字母顺序向下遍历trie树,一旦发现某个节点标记不存在或者单词遍历完成而最后的节点未标记为红色,则表示该单词不存在,若最后的节点标记为红色,表示该单词存在。如下图中:trie树中存在的就是abc、d、da、dda四个单词。在实际的问题中可以将标记颜色的标志位改为数量count等其他符合题目要求的变量。  

字典树(Trie树):应用于统计和排序_第3张图片

      


--------------------- 
作者:规速 
来源:CSDN 
原文:https://blog.csdn.net/hguisu/article/details/8131559 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(数据结构)