MapDB的spring整合使用

MapDB是一个快速、易用的嵌入式Java数据库引擎,它提供了基于磁盘或者堆外(off-heap允许Java直接操作内存空间, 类似于C的malloc和free)存储的并发的Maps、Sets、Queues。

业务场景:

朋友公司需要根据坐标,在200m的地址库中寻找离该坐标最近的经纬度坐标,难点主要有以下两个:

1.快速把坐标落点到二维的平面上区域,假设(-1,-1),应该落点到xy二维的左下方,这里我采用KDTree的方式

2.因为考虑到tree构建成功后,不想每次都重新构建树,那就需要把树缓存起来,但是通过redis等分布式的cache觉得网络带宽是瓶颈,而且我们的地址库可能会频繁更新,如果用jvm等map的缓存,内存马上就被爆仓了,后来转用MapDB发现它提供多种缓存方式,而且对比后,不管速率以及占用空间都相对较小

3.计算点点之间的距离,在二维平面上其实并不难,通过向量,计算sin、cos等常用手段,马上计算所得结果

 

Spring中但配置

 


        
    

    
        
    

    
    
    

    
    

Spring应用启动时加载

 

public class StartupListener implements ServletContextListener {

    private static final Logger LOG = LoggerFactory.getLogger(StartupListener.class);

    @Override
    public void contextInitialized(ServletContextEvent e) {
        ApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(e.getServletContext());

//        AddressInfoMapper addressInfoMapper  = (AddressInfoMapper)ctx.getBean("addressInfoMapper");

        DB db = (DB) ctx.getBean("database");
        BTreeMap monitorDataMap = db.getTreeMap("monitorDataMap");

        // monitorDataMap.put("name", "Young");
       //you can load address information to mapdb

        db.commit();


        if (ctx == null) {
            LOG.error("app start fail!", e);
            throw new RuntimeException("WebApplicationContextUtils.getWebApplicationContext() Fail!");
        }

        LOG.info("app start success.");
    }

    @Override
    public void contextDestroyed(ServletContextEvent sce) {

    }

}

  Service中使用

 

 // Injected database the map are obtained from it.
    private DB database;
    private BTreeMap monitorDataMap;

    public void setDatabase(DB database) {
        this.database = database;
    }

    @PostConstruct
    public void init() throws Exception {
        this.monitorDataMap = database.getTreeMap("monitorDataMap");
    }

 

 

KDTree构建

 

public class KDTree {

    // prevent instantiation
    private KDTree() {}

    private KDTreeNode root;

    public static KDTree build(List points) {
        KDTree tree = new KDTree();
        tree.root = build(points, 0);
        return tree;
    }

    private static KDTreeNode build(List points, int depth) {
        if (points.isEmpty()) return null;

        final int axis = depth % 2;

        Collections.sort(points, new Comparator() {
            public int compare(Point p1, Point p2) {
                double coord1 = p1.getCoords()[axis];
                double coord2 = p2.getCoords()[axis];

                return Double.compare(coord1, coord2);
            }
        });

        int index = points.size() / 2;

        KDTreeNode leftChild = build(points.subList(0, index), depth + 1);
        KDTreeNode rightChild = build(points.subList(index + 1, points.size()), depth + 1);

        Point point = points.get(index);
        return new KDTreeNode(point, axis, leftChild, rightChild);
    }

    @SuppressWarnings({"unchecked"})
    public  T findNearest(Point point) {
        return (T) findNearest(point, 1).get(0);
    }

    public  List findNearest(Point point, int amount) {
        return root.findNearest(point, amount);
    }

    @SuppressWarnings({"unchecked"})
    public  T getRootPoint() {
        return (T) root.getPoint();
    }
}

 

 

个人结论:

在使用mapdb的使用后,本人并未去深入了解mapdb的底层原理,只是应急使用,后续肯定会有很多bug显现,但是在使用其框架后,确实性能不少,3-5ms内就能够很容易的找到点之间最近关联的,内存损耗40多m左右。

你可能感兴趣的:(JAVA)