主要都是根据这篇文章配置的http://blog.csdn.net/muwu5635/article/details/60874721
说一下我碰到的问题。
文章里说到:复制data\VOC0712的create_data.bat到caffe根目录下,修改如下root_dir,但是貌似没有给出具体怎么写。
本人有点懒,直接将代码贴出来
@Echo off
Echo caffe create_annoset Batch
:: https://github.com/conner99/caffe/blob/ssd-microsoft/tools/convert_annoset.cpp
:: You can modify the parameters in create_data.bat if needed.
:: It will create lmdb files for trainval and test with encoded original image:
:: - D:\caffe-ssd-microsoft\data\VOC0712\trainval_lmdb
:: - D:\caffe-ssd-microsoft\data\VOC0712\test_lmdb
set root_dir=D:\caffe-ssd-microsoft
cd %root_dir%
set redo=1
set data_root_dir=data\VOC0712
set mapfile=%data_root_dir%\labelmap_voc.prototxt
set anno_type=detection
set db=lmdb
set min_dim=0
set max_dim=0
set width=0
set height=0
set "extra_cmd=--encode-type=jpg --encoded"
if %redo%==1 (
set "extra_cmd=%extra_cmd% --redo"
)
for %%s in (trainval test) do (
echo Creating %%s lmdb...
python %root_dir%\scripts\create_annoset.py ^
--anno-type=%anno_type% ^
--label-map-file=%mapfile% ^
--min-dim=%min_dim% ^
--max-dim=%max_dim% ^
--resize-width=%width% ^
--resize-height=%height% ^
--check-label %extra_cmd% ^
%data_root_dir% ^
%data_root_dir%\%%s.txt ^
%data_root_dir%\%%s_%db%
)
pause
可能碰到的情况 :缺少protobuf,缺少_caffe什么什么的
缺少protobuf:
1.下载protobuf(地址:https://github.com/google/protobuf/releases),下载两个版本,一个protoc-3.3.0-win32.zip,一个Source code (zip)。
2.将protoc-3.0.0-win32\bin\protoc.exe 拷贝进入Source code 文件夹下 src中
3、进入Source code 文件夹下Python文件夹,cmd执行 python setup.py build, python setup.py install,如果出现ImportError: No module named setuptools,解决方案(http://blog.sina.com.cn/s/blog_3fe961ae0100zgav.html)
缺少_caffe:是因为ssd在原版caffe的基础上增加了一些东西,所以之前用原版caffe生成的pycaffe少了必要的文件。在caffe-ssd-microsoft下生成pycaffe,再把pycaffe文件夹下的caffe文件夹复制到C:\ProgramData\Anaconda2\Lib\site-packages下就OK了。注意caffe-windows-microsoft默认是关闭了python接口的,你要在D:\caffe-ssd-microsoft\windows的CommonSettings.props里把python的接口改成true,地址也改一下。
最后用于显示的ssd_detect.cpp 原文章里只有图片,并且缺了一点,这里帮大家改好了,代码如下:
// This is a demo code for using a SSD model to do detection.
// The code is modified from examples/cpp_classification/classification.cpp.
// Usage:
// ssd_detect [FLAGS] model_file weights_file list_file
//
// where model_file is the .prototxt file defining the network architecture, and
// weights_file is the .caffemodel file containing the network parameters, and
// list_file contains a list of image files with the format as follows:
// folder/img1.JPEG
// folder/img2.JPEG
// list_file can also contain a list of video files with the format as follows:
// folder/video1.mp4
// folder/video2.mp4
//
#include
#ifdef USE_OPENCV
#include
#include
#include
#endif // USE_OPENCV
#include
#include
#include
#include
#include
#include
#include
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
class Detector {
public:
Detector(const string& model_file,
const string& weights_file,
const string& mean_file,
const string& mean_value);
std::vector
private:
void SetMean(const string& mean_file, const string& mean_value);
void WrapInputLayer(std::vector
void Preprocess(const cv::Mat& img,
std::vector
private:
shared_ptr
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
};
Detector::Detector(const string& model_file,
const string& weights_file,
const string& mean_file,
const string& mean_value) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net
net_->CopyTrainedLayersFrom(weights_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file, mean_value);
}
std::vector
Blob
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob
const float* result = result_blob->cpu_data();
const int num_det = result_blob->height();
vector
for (int k = 0; k < num_det; ++k) {
if (result[0] == -1) {
// Skip invalid detection.
result += 7;
continue;
}
vector
detections.push_back(detection);
result += 7;
}
return detections;
}
/* Load the mean file in binaryproto format. */
void Detector::SetMean(const string& mean_file, const string& mean_value) {
cv::Scalar channel_mean;
if (!mean_file.empty()) {
CHECK(mean_value.empty()) <<
"Cannot specify mean_file and mean_value at the same time";
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob
Blob
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
if (!mean_value.empty()) {
CHECK(mean_file.empty()) <<
"Cannot specify mean_file and mean_value at the same time";
stringstream ss(mean_value);
vector
string item;
while (getline(ss, item, ',')) {
float value = std::atof(item.c_str());
values.push_back(value);
}
CHECK(values.size() == 1 || values.size() == num_channels_) <<
"Specify either 1 mean_value or as many as channels: " << num_channels_;
std::vector
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(input_geometry_.height, input_geometry_.width, CV_32FC1,
cv::Scalar(values[i]));
channels.push_back(channel);
}
cv::merge(channels, mean_);
}
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Detector::WrapInputLayer(std::vector
Blob
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Detector::Preprocess(const cv::Mat& img,
std::vector
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
DEFINE_string(mean_file, "",
"The mean file used to subtract from the input image.");
DEFINE_string(mean_value, "104,117,123",
"If specified, can be one value or can be same as image channels"
" - would subtract from the corresponding channel). Separated by ','."
"Either mean_file or mean_value should be provided, not both.");
DEFINE_string(file_type, "image",
"The file type in the list_file. Currently support image and video.");
DEFINE_string(out_file, "",
"If provided, store the detection results in the out_file.");
DEFINE_double(confidence_threshold, 0.01,
"Only store detections with score higher than the threshold.");
int main(int argc, char** argv) {
::google::InitGoogleLogging(argv[0]);
// Print output to stderr (while still logging)
FLAGS_alsologtostderr = 1;
#ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
#endif
gflags::SetUsageMessage("Do detection using SSD mode.\n"
"Usage:\n"
" ssd_detect [FLAGS] model_file weights_file list_file\n");
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (argc < 4) {
gflags::ShowUsageWithFlagsRestrict(argv[0], "examples/ssd/ssd_detect");
return 1;
}
char *labelname[] = { "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" };
const string& model_file = argv[1];
const string& weights_file = argv[2];
const string& mean_file = FLAGS_mean_file;
const string& mean_value = FLAGS_mean_value;
const string& file_type = FLAGS_file_type;
const string& out_file = FLAGS_out_file;
const float confidence_threshold = FLAGS_confidence_threshold;
// Initialize the network.
Detector detector(model_file, weights_file, mean_file, mean_value);
// Set the output mode.
std::streambuf* buf = std::cout.rdbuf();
std::ofstream outfile;
if (!out_file.empty()) {
outfile.open(out_file.c_str());
if (outfile.good()) {
buf = outfile.rdbuf();
}
}
std::ostream out(buf);
// Process image one by one.
std::ifstream infile(argv[3]);
std::string file;
while (infile >> file) {
if (file_type == "image") {
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector
/* Print the detection results. */
for (int i = 0; i < detections.size(); ++i) {
const vector
// Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
CHECK_EQ(d.size(), 7);
const float score = d[2];
if (score >= confidence_threshold) {
out << file << " ";
out << static_cast
out << score << " ";
out << static_cast
out << static_cast
out << static_cast
out << static_cast
int posx = static_cast
int posy = static_cast
int posw = static_cast
int posh = static_cast
cv::Rect pos(posx, posy, posw, posh);
cv::rectangle(img, pos, cv::Scalar(0, static_cast
std::string words = std::string(labelname[static_cast
cv::putText(img, words, cv::Point(posx, posy), CV_FONT_HERSHEY_COMPLEX, 0.4, cv::Scalar(0, static_cast
}
}
cv::imshow("SSD", img);
std::string save_name = file;
save_name = save_name.substr(0, save_name.find_last_of('.'));
save_name = save_name + "_SSD_detect.jpg";
std::cout << save_name << std::endl;
cv::imwrite(save_name, img);
cv::waitKey(0);
}
else if (file_type == "video") {
cv::VideoCapture cap(file);
if (!cap.isOpened()) {
LOG(FATAL) << "Failed to open video: " << file;
}
cv::Mat img;
int frame_count = 0;
while (true) {
bool success = cap.read(img);
if (!success) {
LOG(INFO) << "Process " << frame_count << " frames from " << file;
break;
}
CHECK(!img.empty()) << "Error when read frame";
std::vector
/* Print the detection results. */
for (int i = 0; i < detections.size(); ++i) {
const vector
// Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
CHECK_EQ(d.size(), 7);
const float score = d[2];
if (score >= confidence_threshold) {
out << file << "_";
out << std::setfill('0') << std::setw(6) << frame_count << " ";
out << static_cast
out << score << " ";
out << static_cast
out << static_cast
out << static_cast
out << static_cast
}
}
++frame_count;
}
if (cap.isOpened()) {
cap.release();
}
} else {
LOG(FATAL) << "Unknown file_type: " << file_type;
}
}
return 0;
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV
再编译一下就行了