弦耕不辍(三)

弦耕不辍(三)_第1张图片

第二部分 一种新型的一体化波形

2.1数学表达

关于MSK 的单一频率,第k位(传输的数据的第k位)这种新波形的调制信号的调制信号是:

s k ( t ) = p k c o s ( π t 2 T ) c o s ( 2 π f c t + π μ t 2 ) − q k s i n ( π t 2 T ) s i n ( 2 π f c t + π μ t 2 ) ( 1 ) = c o s ( π μ t 2 + p k q k π t 2 T + 1 − p k 2 π ) c o s ( 2 π f c t ) − s i n ( π μ t 2 + p k q k π t 2 T + 1 − p k 2 π ) s i n ( 2 π f c t ) ( 2 ) s_k(t)=p_kcos({\frac{{\pi}t}{2T}})cos(2{\pi}f_ct+{\pi}{\mu}t^2)-q_ksin({\frac{{\pi}t}{2T}})sin(2{\pi}f_ct+{\pi}{\mu}t^2) {\qquad}{\qquad}{\qquad}{\qquad}{\qquad}(1)\\=cos({\pi}{\mu}t^2+p_kq_k{\frac{{\pi}t}{2T}}+{\frac{1-p_k}{2}}{\pi})cos(2{\pi}f_ct)-sin({\pi}{\mu}t^2+p_kq_k{\frac{{\pi}t}{2T}}+{\frac{1-p_k}{2}}{\pi})sin(2{\pi}f_ct) {\qquad}{\qquad}{\qquad}{\qquad}{\qquad}(2) sk(t)=pkcos(2Tπt)cos(2πfct+πμt2)qksin(2Tπt)sin(2πfct+πμt2)(1)=cos(πμt2+pkqk2Tπt+21pkπ)cos(2πfct)sin(πμt2+pkqk2Tπt+21pkπ)sin(2πfct)(2)

T是位宽, p k , q k ∈ { ± 1 } p_k,q_k{\in}{\{{\pm}1\}} pk,qk{±1},且这两个系数就携带着信息。相比于单一频率的MSK方法,等式(1)仅仅就是用 e x p ( j ( 2 π f c t + π μ t 2 ) ) {exp(j(2{\pi}f_ct+{\pi}{\mu}t^2))} exp(j(2πfct+πμt2))来替换载波 e x p ( j 2 π f c t ) {exp(j2{\pi}f_ct)} exp(j2πfct)

弦耕不辍(三)_第2张图片

然后,等式(2)可以表达成 s k ( t ) = R e s ~ k ( t ) e j 2 π f c t s_k(t)=Re{{\tilde{s}}_k}(t)e^{j2{\pi}f_ct} sk(t)=Res~k(t)ej2πfct是这个信号复杂的包络,其表达式如下:

s ~ k ( t ) = r e c t ( t − ( k − 1 ) T T ) e j π ( μ t 2 + p k q k 2 T t + 1 − p k 2 ) {\tilde{s}}_k(t)=rect{\Bigg(}{\frac{t-(k-1)T}{T}}{\Bigg)}e^{j{\pi}({\mu}t^2+{\frac{p_kq_k}{2T}}t+{\frac{1-p_k}{2}})} s~k(t)=rect(Tt(k1)T)ejπ(μt2+2Tpkqkt+21pk)

其中 r e c t ( x ) = { 1 , x ≥ 0 0 , 其 他 rect(x)=\begin{cases} 1,{\qquad}& x{\ge} 0 \\ 0,{\qquad}& 其他 \end{cases} rect(x)={1,0,x0

而对于 N N N位的调制信号而言,其表达式为:

s ~ ( t ) = r e c t ( t N T ) e j π μ t 2 ⋅ ∑ k = 1 N r e c t ( t − ( k − 1 ) T T ) e j π ( p k q k t 2 T + 1 − p k 2 ) {\tilde{s}}(t)=rect({\frac{t}{NT}})e^{j{\pi}{\mu}t^2}·{\sum}_{k=1}^{N}rect{\Bigg(}{\frac{t-(k-1)T}{T}}{\Bigg)}e^{j{\pi}(p_kq_k{\frac{t}{2T}}+{\frac{1-p_k}{2}})} s~(t)=rect(NTt)ejπμt2k=1Nrect(Tt(k1)T)ejπ(pkqk2Tt+21pk)

||望诸君不要怪罪于某,非我懒惰不愿写,实则 L a T e X LaTeX LaTeX语言虽然形式美观,但编写极其繁复,望诸位见谅,下附录一些 L a T e X LaTeX LaTeX源代码:

s_k(t)=p_kcos({\frac{{\pi}t}{2T}})cos(2{\pi}f_ct+{\pi}{\mu}t^2)-
q_ksin({\frac{{\pi}t}{2T}})sin(2{\pi}f_ct+{\pi}{\mu}t^2)
 {\qquad}{\qquad}{\qquad}{\qquad}{\qquad}(1)\\
=cos({\pi}{\mu}t^2+p_kq_k{\frac{{\pi}t}{2T}}+{\frac{1-p_k}{2}}{\pi})cos(2{\pi}f_ct)-
sin({\pi}{\mu}t^2+p_kq_k{\frac{{\pi}t}{2T}}+{\frac{1-p_k}{2}}{\pi})sin(2{\pi}f_ct)
 {\qquad}{\qquad}{\qquad}{\qquad}{\qquad}(2)

{\tilde{s}}_k(t)=
rect{\Bigg(}{\frac{t-(k-1)T}{T}}{\Bigg)}e^{j{\pi}({\mu}t^2+
{\frac{p_kq_k}{2T}}t+{\frac{1-p_k}{2}})}

rect(x)=\begin{cases}  
 1,{\qquad}& x{\ge} 0 \\
0,{\qquad}& 其他
\end{cases}

{\tilde{s}}(t)=
rect({\frac{t}{NT}})e^{j{\pi}{\mu}t^2}·
{\sum}_{k=1}^{N}rect{\Bigg(}{\frac{t-(k-1)T}{T}}{\Bigg)}
e^{j{\pi}(p_kq_k{\frac{t}{2T}}+{\frac{1-p_k}{2}})}

满纸荒唐言也!

你可能感兴趣的:(纯属爱好,专业知识,日常)