点击打开链接
题意:给一个字符串,有q次询问,为你从第L个到第R个字符组成的不同的子串的数量
思路:做过好多这种提问的了,减去的数量就是lcp[i]的值,不过这个是一个区间内的操作,正解是后缀自动机,然而还没学~~~,发现对于n*q*log应该没什么问题,就写了写,对于询问的这个区间,我一开始写的是跑sa数组,如果sa[i]在L和R区间内,那么加进去,与下一个在这个区间的sa进行RMQ查询最长公共前缀,更新这个两个值即可,还要注意的是虽然最长公共前缀可能很大但是这个区间没那么大,就需要处理一下了,过了样例交了一发WA,在交WA,在交WA.......好吧思路应该是错了,看了网上题解,发现写的差不多嘛((/ □ \)),其实思路完全不一样,那么错在哪呢,是因为对于现在查询的区间它的sa数组和整个大区间的sa数组顺序可能是不一样的,那么如何用整体的来调整区间的就是任务了,举个例子
如:abacab 整体的sa为 5 ab 1 abacab 3 acab 6 b 2 bacab 4 cab
而我们如果要[1,3]的,那么这部分的sa为 3 a 1 aba 2 ba 那么有一部分错了即3与1的位置,那么该如何调整呢,就是代码中注释那句话,当abacab与acab比较时,在部分中的lcp为1,而对于部分来说,lcp大于3到最后的长度,则说明它的sa肯定是比aba高的,这很好懂吧,所以不需要更新pos,依次类推下去就可以了
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int MAXN=4010;
int wa[MAXN],wb[MAXN],wv[MAXN],ww[MAXN];
int sa[MAXN],lcp[MAXN],Rank[MAXN],rank1[MAXN],dp[MAXN][20];
char str[MAXN];
inline bool cmp(int *r,int a,int b,int len){
return r[a]==r[b]&&r[a+len]==r[b+len];
}
void construct_sa(int n,int m){
int i,j,p,*x=wa,*y=wb,*t;n++;
for(i=0;i=0;i--) sa[--ww[x[i]]]=i;
for(j=p=1;p=j)
y[p++]=sa[i]-j;
}
for(i=0;i=0;i--) sa[--ww[wv[i]]]=y[i];
for(t=x,x=y,y=t,x[sa[0]]=0,p=i=1;i0) h--;
for(;j+hri) swap(le,ri);le++;
int k=0;
while((1<<(k+1))<=ri-le+1) k++;
int ans2=min(dp[le][k],dp[ri-(1<=a){
if(pos==-1) pos=sa[i];
else{
now=sa[i];
int kk=RMQ(now,pos);
int tt=min(kk,min(b-now,b-pos)+1);
ans-=tt;
if(pos=(b-now+1)){}//和我自己写的就差这么一步,o(︶︿︶)o 唉
else pos=sa[i];
}
}
}
printf("%d\n",ans);
}
}
return 0;
}