ZOJ1004-Anagrams by Stack

How can anagrams result from sequences of stack operations? There are two sequences of stack operators which can convert TROT to TORT:
[
i i i i o o o o
i o i i o o i o
]

where i stands for Push and o stands for Pop. Your program should, given pairs of words produce sequences of stack operations which convert the first word to the second.

Input

The input will consist of several lines of input. The first line of each pair of input lines is to be considered as a source word (which does not include the end-of-line character). The second line (again, not including the end-of-line character) of each pair is a target word. The end of input is marked by end of file.

Output

For each input pair, your program should produce a sorted list of valid sequences of i and o which produce the target word from the source word. Each list should be delimited by

[
]
and the sequences should be printed in "dictionary order". Within each sequence, each i and o is followed by a single space and each sequence is terminated by a new line.

Process

A stack is a data storage and retrieval structure permitting two operations:

Push - to insert an item and
Pop - to retrieve the most recently pushed item

We will use the symbol i (in) for push and o (out) for pop operations for an initially empty stack of characters. Given an input word, some sequences of push and pop operations are valid in that every character of the word is both pushed and popped, and furthermore, no attempt is ever made to pop the empty stack. For example, if the word FOO is input, then the sequence:

i i o i o o is valid, but
i i o is not (it's too short), neither is
i i o o o i (there's an illegal pop of an empty stack)

Valid sequences yield rearrangements of the letters in an input word. For example, the input word FOO and the sequence i i o i o o produce the anagram OOF. So also would the sequence i i i o o o. You are to write a program to input pairs of words and output all the valid sequences of i and o which will produce the second member of each pair from the first.

Sample Input

madam
adamm
bahama
bahama
long
short
eric
rice

Sample Output

[
i i i i o o o i o o 
i i i i o o o o i o 
i i o i o i o i o o 
i i o i o i o o i o 
]
[
i o i i i o o i i o o o 
i o i i i o o o i o i o 
i o i o i o i i i o o o 
i o i o i o i o i o i o 
]
[
]
[
i i o i o i o o 
]


题目大意:规定 i 为入栈,o 为出栈,现在给两个字符串st1,st2,现在要将st1转化为st2,转化方法是,st1中字符从头开始入栈,并合理出栈构造出st2。请输出所有可能的出入栈步骤。

分析:该题主要是用于STL的运用联系,这里用到了stack。
           构造st2可以用递归来实现。ipush表示入栈元素个数,ipop表示出栈元素个数,当二者都等于字符串长度len时,构造完成。
           出栈的条件:当栈顶元素恰为构造st2当前所需字符时,出栈。
           因为构造方法不唯一,所以应当做回溯处理。
           递归构造时先入后出,输出结果即符合字典序。

代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
string st1,st2;
int len;
stack  a;
vector  b;
void dfs(int ipush,int ipop)
{
	if(ipush==len&&ipop==len)//边界,构造完成。
	{
		for(int i=0;i=1&&a.top()==st2[ipop])//出栈,保证不会爆栈,且栈顶元素恰为st2中所需字符。
	{
		char now=a.top();
		a.pop();
		b.push_back('o');
		dfs(ipush,ipop+1);
		a.push(now);//回溯。
		b.pop_back();
	}
}
int main()
{
	while(cin>>st1>>st2)
	{
		len=st1.length();
		printf("[\n");
		dfs(0,0);//dfs(ipush,ipop)表示st1与st2中末尾字符下标。也是目前入栈出栈次数。
		printf("]\n");
	}
	return 0;
}



你可能感兴趣的:(ZOJ1004-Anagrams by Stack)