- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- leetcode 0008 - 字符串转换整数 (atoi) medium
SuperCandyXu
Leetcodeleetcode算法
1题目:字符串转换整数(atoi)请你来实现一个myAtoi(strings)函数,使其能将字符串转换成一个32位有符号整数。函数myAtoi(strings)的算法如下:空格:读入字符串并丢弃无用的前导空格("")符号:检查下一个字符(假设还未到字符末尾)为‘-’还是‘+’。如果两者都不存在,则假定结果为正。转换:通过跳过前置零来读取该整数,直到遇到非数字字符或到达字符串的结尾。如果没有读取数字
- tarjan算法——求无向图的割点和桥
风灵无畏YY
强连通分量tarjan割点和桥
一.基本概念1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。二:tarjan算法在求桥和割点中的应用1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子
- 【Python】7天-python实现缓存-day01
qq_40375355
Python-7天小项目pythonpython缓存开发语言
使用Python实现类似redis的缓存,原文是使用go实现的,本文使用python实现,用来比较两者的区别,方便从python转go的开发者比较二者的不同。PS:原文链接是:https://geektutu.com/post/geecache-day1.htmlPS:预计在完成前还会对本文多次修改仅作参考PS:测试代码也会在后续补充一、LRU和LRU-K原文使用的是LRU算法,这里改成LRU-K
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- python爬虫项目(一百九十八):电商平台用户行为数据分析与推荐系统、爬取电商平台用户行为数据
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫数据分析开发语言信息可视化okhttp
在现代电商平台中,用户的行为数据对于优化用户体验、提升销量以及个性化推荐至关重要。通过抓取和分析用户的浏览、点击、购买等行为数据,电商平台能够更好地了解用户的偏好,从而推荐相关产品,增加用户的黏性和购买意愿。本篇博客将详细介绍如何通过爬虫技术抓取电商平台的用户行为数据,并结合数据分析和推荐算法,构建一个简单的推荐系统。目录一、电商平台用户行为数据二、爬虫技术实现2.1网站分析2.2使用Seleni
- Tarjan求无向图割边
Visors
算法图论
文章目录Tarjan算法无向连通图的搜索树时间戳dfn追溯值low无向图的割边及判定对重边的处理参考实现Tarjan算法不得不说RobertTarjan真的是大师,发个网站大家感受一下——论文索引。这里要说的Tarjan算法用于解决无向图的连通性,学习之前,先了解两个概念。无向连通图的搜索树当我们遍历一个无向连通图时,显然一个点只会被访问一次,而访问一个点的方法是从一个当前已访问的点uuu,沿着它
- 【Day47 LeetCode】图论问题 Ⅴ
银河梦想家
leetcode图论算法
一、图论问题Ⅴ今天学习最小生成树算法–prim算法和kruskal算法。最小生成树是所有节点的最小连通子图,有n个节点则必有n-1条边将所有节点连接起来。如何选取n-1条边使得图中所有节点连接到一起,并且边的权值和最小,这就是最小生成树问题。1、prim算法–寻宝问题prim算法的思想是每次寻找距离最小生成树最近的节点,并加入到最小生成树中。prim主要有三步:1、选距离生成树最近节点;2、最近节
- 《AI 大模型 ChatGPT 的传奇》
武昌库里写JAVA
面试题汇总与解析课程设计springbootvue.js算法数据结构
《AI大模型ChatGPT的传奇》——段方某世界100强企业大数据/AI总设计师教授北京大学博士后助理:1三6三二四61四五41AI大模型的概念和特点1.1什么是”大模型、多模态“?1.2大模型带来了什么?1.3大模型为什么能产生质变?1.4算法层面的跃升1.4.1RNN到transformor1.4.2扩散模型diffusion1.4.3跨模态的CLIP框架1.5AIGC的耀眼成果1.5.1AI
- 大模型专栏博文汇总和索引
Donvink
大模型transformer深度学习人工智能语言模型
大模型专栏主要是汇总了我在学习大模型相关技术期间所做的一些总结和笔记,主要包括以下几个子专栏:DeepSeek-R1AIGC大模型实践Transformer多模态系统视频理解对比学习目标检测目标跟踪图神经网络大模型专栏汇总了以上所有子专栏的论文,目前暂时先按照不同的技术领域划分子专栏,子专栏之间的内容可能会有交集,不完全是独立的。为了方便查阅相关模块的内容,故以此文章进行汇总与索引。一、DeepS
- 【二分查找 图论】P10050 [CCO2022] Alternating Heights|普及
闻缺陷则喜何志丹
#洛谷普及图论c++洛谷二分查找滑动窗口身高学生
本文涉及的基础知识点本博文代码打包下载C++二分查找C++图论C++算法:滑动窗口及双指针总结[CCO2022]AlternatingHeights题目描述Troy计划给CCO的学生拍一张合影,他向你寻求帮助。有KKK个学生,编号从111到KKK。Troy忘记了学生的身高,但他记得没有两个学生的身高相同。Troy有一个序列A1,A2,…,ANA_{1},A_{2},\ldots,A_{N}A1,A
- 【数据挖掘】NumPy
dundunmm
数据挖掘数据挖掘numpy人工智能
NumPy是Python中一个用于进行科学计算的基础库,它提供了高效的数组操作和数学运算功能。在数据挖掘中,NumPy被广泛应用于数据预处理、特征工程、算法实现等方面,尤其是在处理大规模数据时,因其提供的高效运算和矩阵操作的能力,极大地提升了数据处理的效率。NumPy的主要功能和在数据挖掘中的应用高效的多维数组(ndarray):NumPy提供了一个强大的多维数组对象ndarray,可以存储和处理
- 如何使用Python爬虫实时获取股票行情数据并进行分析:完整教程
Python爬虫项目
2025年爬虫实战项目爬虫python开发语言信息可视化c++
前言在金融领域,股票行情的实时获取和分析是投资决策中至关重要的一环。借助Python的强大生态系统,结合爬虫技术和数据分析库,投资者可以实时获取股票行情数据,并通过各种算法和模型进行深入分析。本教程将从零开始,带你深入学习如何使用Python爬取股票行情数据并进行分析。一、爬虫技术概述爬虫是从网络上自动提取信息的程序,它可以帮助我们获取互联网数据。在股票分析中,爬虫技术的应用非常广泛,尤其是通过A
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 设计模式-行为型模式
Normal Developer
设计模式
行为型设计模式主要关注对象之间的职责分配,即它们如何交互以及如何分配职责。这类模式不仅描述了如何在对象之间划分责任,还涉及算法的封装和实现。以下是几种常见的行为型设计模式及其简要说明:1.观察者模式(ObserverPattern)目的:定义一种一对多的依赖关系,使得当一个对象的状态发生变化时,所有依赖于它的对象都会得到通知并自动更新。应用场景:事件处理系统、订阅发布机制。示例:importjav
- Redis分布式存储案例面试题
哎呀哎呀诶
Redisredis分布式数据库
问:1~2亿条数据需要缓存,请问如何设计这个存储案例?答:单机单台肯定是不可能的,肯定是分布式存储。问:用redis如何落地?答:1、哈希取余分区(小厂回答)2、一致性哈希算法分区(中厂回答)3、哈希槽分区(大厂回答,推荐回答)1、哈希取余分区2亿条记录就是2亿个(k,v),我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key)%N个机器台数,计
- 使用Hugging Face Text Embeddings Inference进行文本嵌入推理
dgay_hua
python
在自然语言处理中,文本嵌入是一个重要的技术,它将文本转换为可以由机器学习算法处理的数字向量。在这篇文章中,我们将探讨如何使用HuggingFace的TextEmbeddingsInference(TEI)工具包来部署和服务开源文本嵌入和序列分类模型。TEI支持高性能提取,包括常用的嵌入模型如FlagEmbedding、Ember、GTE和E5。技术背景介绍文本嵌入在现代NLP任务中起着关键作用,它
- 关于回溯算法中的剪枝是否需要for循环的总结归纳
Exhausted、
算法算法深度优先c++数据结构剪枝
在回溯算法中,剪枝的目的是减少不必要的递归调用,从而提高算法的效率。剪枝的方式可以有很多种,有些剪枝确实不需要在for循环中实现,而是通过其他方式(如条件判断)来实现。下面详细解释为什么有些剪枝不需要for循环,以及如何根据具体问题选择合适的剪枝方式。目录一、为什么有些剪枝不需要for循环?剪枝的本质:剪枝的位置:剪枝的灵活性:二、举例说明例子1:组合问题(需要for循环剪枝)为什么需要for循环
- 算法篇1:二分查找
呀呀猴
算法算法经验分享java其他python
数组篇算法一:二分查找详解零、问题描述给定一个n个元素有序的(升序)整型数组nums和一个目标值target,编写一个函数搜索nums中的target。若目标值存在返回下标,否则返回-1。示例:输入:nums=[-1,0,3,5,9,12],target=9输出:4一、算法适用条件有序性:数组必须按升序或降序排列(通常假设升序)。唯一性(非必须):若数组有重复元素,需明确查找目标(如第一个/最后一
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- 量化交易如何利用算法模型进行股票筛选?其选股策略包含哪些方面?
量化问财
量化投资程序化炒股券商API算法人工智能python
前言量化交易是一种基于数学模型、统计分析和计算机算法的交易方式,通过系统化的方法筛选股票并进行投资决策。与传统交易依赖主观判断不同,量化交易强调数据驱动和模型优化,能够更高效地捕捉市场机会并控制风险。以下是量化交易通过算法模型选择股票的核心逻辑和方法。一、量化交易选股的核心逻辑量化交易选股的核心在于通过数学模型和算法,从海量数据中挖掘出具有潜在收益的股票。其逻辑主要基于以下几个方面:数据驱动的决策
- 【第三天】零基础学习量化基础代码分析-持续更新
Long_poem
学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录记录量化基础代码总览引言基本概念量化投资伪代码示例:量化投资模型框架总结每日-往期回看第一天零基础学量化基础知识点总览-持续更新第二天零基础学习量化基础代码总览-持续更新第三天零基础学习量化基础代码分析-持续更新记录量化基础代码总览引言量化投资是一种基于数学模型和计算机算法来制定投资策略的方法。通过分析历史数据,发现市场规律,
- AI探索笔记:浅谈人工智能算法分类
安意诚Matrix
机器学习笔记人工智能笔记
人工智能算法分类这是一张经典的图片,基本概况了人工智能算法的现状。这张图片通过三个同心圆展示了人工智能、机器学习和深度学习之间的包含关系,其中人工智能是最广泛的范畴,机器学习是其子集,专注于数据驱动的算法改进,而深度学习则是机器学习中利用多层神经网络进行学习的特定方法。但是随着时代的发展,这张图片表达得也不是太全面了。我更喜欢把人工智能算法做如下的分类:传统机器学习算法-线性回归、逻辑回归、支持向
- ASFF算法
神笔馬良
Python入门知识深度学习人工智能
1.特征金字塔的缺点:对于单发检测器,在不同尺度上的不一致。2.采用启发式引导的特征选择:大实例通常与上层特征映射相关联,小实例与下层特征映射相关联。3.解决的问题:如果一幅图像同时包含大小目标,则不同层次特征之间的冲突往往占据特征金字塔的主要部分。这种不一致性干扰了训练过程中的梯度计算,降低了特征金字塔的有效性。4.这个问题存在的原因:当一个对象在某一层特征图中被赋值并被视为正值时,其他层特征图
- 算法-数据结构-图-邻接表构建
程序员南飞
算法数据结构java职场和发展
邻接表的基本概念顶点(Vertex):图中的每个顶点用一个节点表示。每个顶点存储一个链表或数组,用于记录与该顶点直接相连的其他顶点。边(Edge):如果顶点A和顶点B之间有一条边,那么在A的邻接表中会记录B,同时在B的邻接表中也会记录A(如果是无向图)。存储方式:邻接表可以用多种方式实现,比如:链表:每个顶点对应一个链表,链表中存储与该顶点相连的其他顶点。动态数组:每个顶点对应一个动态数组(如Ar
- 详细介绍STM32(32位单片机)外设应用
日记成书
反正看不懂系列stm32学习
以下是关于STM32外设应用的详细介绍,结合其功能特点及实际应用场景进行分类说明:一、基本接口与数字外设GPIO(通用输入输出端口)功能:支持输入/输出模式切换,可配置为推挽、开漏、上拉/下拉等模式,驱动能力可调。应用:控制LED、蜂鸣器等简单外设;读取按键、传感器信号(需结合消抖电路或软件消抖算法);复用为其他外设功能引脚(如SPI、I2C)。代码示例://配置PA0为推挽输出(HAL库)GPI
- Objective-C实现NLP中文分词(附完整源码)
源代码大师
Objective-C实战教程自然语言处理objective-c中文分词
Objective-C实现NLP中文分词实现中文分词(NLP中的重要任务之一)在Objective-C中需要处理文本的切分和识别词语边界。尽管Objective-C在自然语言处理(NLP)领域并不常见,但通过合理的算法设计和数据结构,可以实现基本的中文分词功能。本文将介绍如何使用基于字典的最大匹配算法(MaximumMatchingAlgorithm),例如正向最大匹配(ForwardMaximu
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。