- 多模态大模型论文总结
sudun_03
语言模型算法人工智能
MM1:Methods,Analysis&InsightsfromMultimodalLLMPre-training在这项工作中,我们讨论了建立高性能的多模态大型语言模型(MLLMs)。特别是,我们研究了各种模型结构组件和数据选择的重要性。通过对图像编码器、视觉语言连接器和各种预训练数据选择的仔细而全面的验证,我们确定了几个关键的设计教训。例如,我们证明,与其他已发表的多模式预训练结果相比,对于使
- ChatGPT魔法2:两大准则
王丰博
GPTchatgpt
1.Prompt2.原则第一原则:清晰Clear具体Specific小细节:1)使用双引号2)举个例子(比如名字,不要叫铁蛋)第二原则:给他时间比如讲一半,使用请继续(有字数限制)Eg1:如果写书,需要一步一步走,概要,然后分成八个章节,然后第一个章节,分段Eg2:小孩家教Eg3:学英语。润色及优化Eg4:论文总结、翻译等ChatGPT4.0的Plugin。Eg5:如何有记忆功能:记忆窗口(Cha
- [论文精读]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
论文精读人工智能深度学习学习图论分类笔记
论文网址:https://arxiv.org/abs/2205.12465论文代码:https://github.com/Wayfear/FBNETGEN英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!目录1.省流版1.1.心得1.2.论文总结图2.论文逐段精读2.1.Abstr
- [论文总结] 深度学习在农业领域应用论文笔记12
落痕的寒假
论文总结深度学习论文阅读人工智能
文章目录1.3D-ZeF:A3DZebrafishTrackingBenchmarkDataset(CVPR,2020)摘要背景相关研究所提出的数据集方法和结果个人总结2.Automatedflowerclassificationoveralargenumberofclasses(ComputerVision,Graphics&ImageProcessing,2008)摘要背景分割与分类数据集和实
- AAAI 2024 时序和时空论文总结
STLearner
时空数据数据挖掘论文阅读智慧城市机器学习深度学习pytorchpython
AAAI今年共有12100篇投稿(MainTechnicalTrack),有9862篇经过严格审稿,共录取了2342篇论文,录取率23.75%。12月19日,为AAAI2024camera-ready的截止日期,AAAI24效率很高,也很快放出了录取论文的标题和作者。AAAI2024将在2024年2月20日到27日于加拿大温哥华举行。本文总结了2024AAAI上有关时空数据(spatial-tem
- NeurIPS 2023 时间序列相关论文总结
STLearner
大数据智慧城市pytorch数据挖掘论文阅读深度学习
祝大家中秋国庆双节快乐!NeurIPS2023将于11月28日到12月9日在美国路易斯安那州新奥尔良举行。根据官方公布的邮件显示,今年共有12343篇投稿,接受率为26.1%,官网显示一共有3564篇论文。本文总结了NeurIPS23时间序列(不含时空数据,已经另外总结)的相关论文。包括时间序列预测,分类,异常检测,因果发现,交通,医疗等领域时间序列应用和大模型在时间序列问题建模的探索等方向。1.
- WWW 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
STLearner
时空数据人工智能机器学习深度学习数据挖掘智慧城市论文阅读
WWW2024已经放榜,本次会议共提交了2008篇文章,researchtracks共录用约400多篇论文,录用率为20.2%。本次会议将于2024年5月13日-17日在新加坡举办。本文总结了WWW2024有关时间序列(TimeSeries)和时空数据(Spatial-Temporal)的相关文章,部分挂在了arXiv上。时间序列Topic:时序预测,异常检测,时域频域,大模型等时空数据Topic
- 2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
Siberia_
一、基本信息 题目:Anomalydetectionwithrobustdeepautoencoders 期刊/会议:ACMSIGKDD 发表时间:2017年 引用次数:26二、论文总结2.1研究方向 提高自编码模型的抗噪声能力2.2写作动机 受鲁棒PCA的启发,将原始数据分成正常数据和噪声、异常数据两部分,然后进行交替训练。2.3创新之处 除了使用传统的L1正则化去约束噪声部分之外
- Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation 论文总结
Lancelot_Xwx
sql语言模型数据库论文阅读
目录论文摘要Summary:问题表示(Questionrepresentation)1.BasicPrompt(BSPBS\_PBSP)2.TextRepresentationPrompt(TRPTR\_PTRP)3.OpenAIDemostrationPrompt(ODPOD\_PODP)4.CodeRepresentationPrompt(CRPCR\_PCRP)5.AlpacaSFTProm
- (论文总结)Beyond the Nav-Graph: Vision-and-Language Navigation in ContinuousEnv
Hoyyyaard
HabitatVisualNavigation深度学习人工智能
文章目录1IntroductionVLN研究的假设Vision-and-LanguageNavigationinContinuousEnvironments.2RelatedWorkLanguage-guidedVisualNavigationTasks3VLNinContinuousEnvironments(VLN-CE)ContinuousMatterport3DEnvironmentsinH
- 论文推荐:大语言模型在金融领域的应用调查
deephub
语言模型金融人工智能深度学习
这篇论文总结了现有LLM在金融领域的应用现状,推荐和金融相关或者有兴趣的朋友都看看论文分为2大部分:1、作者概述了使用llm的现有方法包括使用零样本或少样本的预训练模型,对特定于领域的数据进行微调,还有从头开始训练定制llm,并给出了关键模型的总结与评价。2、根据给定的用例、数据约束、计算和性能需求,提出决策框架,指导选择合适的LLM解决方案,这是这篇论文可以好好阅读的地方,因为论文还对在金融领域
- ICCV 2023 超分辨率(super-resolution)方向上接收论文总结
yyywxk
ICCV2023官网链接:https://iccv2023.thecvf.com/会议时间:2023年10月2日至6日,法国巴黎(Paris)。ICCV2023统计数据:收录2160篇。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分SRFormer:PermutedSelf-AttentionforSingleImageSuper-ResolutionPaper:http:/
- ORB-SLAM2论文总结
Mr.Qin_
SLAMslamorbORB-SLAM2
ORB-SLAM2学文学习总结1系统概述2加速特征点匹配策略2.1词袋模型加速匹配2.2恒速运动模型加速匹配3系统原理详解3.1初始化3.2跟踪线程3.3局部建图线程3.4回环检测线程4一些总结4.1单目、双目、RGBD的差别4.2系统所用到的优化1系统概述 ORB-SLAM2支持单目、双目、RGB-D相机的输入,整个系统包含三个线程跟踪线程、局部建图线程、回环检测线程(当检测到回环时,回环融合
- The Rise and Potential of Large Language Model Based Agents: A Survey 导读
Travis_del
大语言模型aiagent语言模型人工智能自然语言处理
这篇论文探讨了基于大型语言模型(LLM)的智能代理的发展和潜力。传统的AI算法或训练策略只能提高特定任务的表现,而LLM作为通用且强大的模型,可以为设计适应不同场景的智能代理提供基础。作者提出了一个包含“大脑”、“感知”和“行动”的通用框架,并将其应用于单个代理、多代理和人机合作等不同应用场景中。此外,他们还探索了LLM代理在社会中的行为和个性特征,以及它们对人类社会的启示。该论文总结了一些关键问
- 工作分析文献综述_不可错过的经验!北大教授分析124 篇不合格硕士学位论文总结六大典型问题!...
weixin_39929635
工作分析文献综述数据导论论文论文框架和目录区别
根据词条的词频统计状况,按占比情况由高到低排列,不合格学位论文大致存在“作者科研能力不足”“论文规范性欠缺”“论文创新性和价值性不高”“文献综述质量较低”“作者学术态度和行为不端正”及“选题意义和严谨性不够”六大问题,占比分别为38%、29%、13%、8%、7%和5%。由于这六大问题下面又衍生出多个问题,受篇幅限制,本文仅从“不合格论文”存在的诸多问题中总结归纳出其中最具代表性的问题,作为不合格学
- ECCV 2022 超分辨率(super-resolution)方向上接收论文总结(持续更新)
yyywxk
ECCV2022除了著名的CVPR、ICCV,ECCV(欧洲计算机视觉国际会议)也是计算机视觉三大国际顶级会议之一,每两年召开一次。本届ECCV2022将在10月23日-27日的以色列特拉维夫(Tel-Aviv)举行,采取线下和线上混合形式召开[1]。而本届会议论文录用率不足20%。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分CADyQ:Content-AwareDynam
- 大模型日报-20240119
程序无涯海
大模型资讯篇AIGC大模型chatGPTAI动态日报
这里写目录标题机器人领域首个开源视觉-语言操作大模型,RoboFlamingo框架激发开源VLMs更大潜能用大模型帮程序员找Bug,中科院剖析102篇论文总结出这些方案Nature子刊|化学家和机器人都可以读懂,用于机器人合成可重复性的通用化学编程语言StabilityAI发布StableCode3B模型,没有GPU也能本地运行上海AI实验室书生·浦语2.0正式开源,回归语言建模本质OpenAI组
- 【论文总结】基于深度学习的特征点提取,特征点检测的方法总结
醉酒柴柴
深度学习人工智能学习笔记论文阅读
这里写目录标题相关工作1.DiscriminativeLearningofDeepConvolutionalFeaturePointDescriptors(2015)网络结构sift算法损失函数的构建2.MatchNet(2015)网络中的组成部分其他组成部分损失函数结果3.LIFT:LearnedInvariantFeatureTransform(2016)网络结构训练网络结构损失函数训练和测试
- Deep Learning Based Channel Estimation论文读后感+论文复现,自己总结的
Martin__Liu
OFDM+机器学习/深度学习深度学习计算机视觉人工智能网络通信数字通信
DeepLearningBasedChannelEstimation的读后感,论文总结+论文复现DeepLearningBasedChannelEstimation1.这一篇论文到底要做什么2.将这两个网络训练好了,然后就是利用5,10,15,20,25,30db的数据集进行预测。3.就是均方误差的计算4.为什么这一篇文章自己没有办法进行了?DeepLearningBasedChannelEsti
- 点云相关论文总结
计算机视觉-Archer
人工智能
点云Backbone全链接-PointNet++:https://arxiv.org/pdf/1706.02413.pdfTransformer-PointTransformer:https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Point_Transformer_ICCV_2021_paper.pdf3DCNN-https://
- WSDM 2023 2024时空&时序论文总结
STLearner
时空数据大数据智慧城市pytorch数据挖掘论文阅读深度学习机器学习
WSDM(WebSearchandDataMining)是CCFB类会议,清华A类会议(一年就100来篇怎么能不算顶会!)WSDM2024将在2024年3月4日-3月8日在墨西哥梅里达(Mérida,México)举行。目前官网已经放出了所有被录用论文的表单(链接在相关链接给出)。本次会议共收录112篇论文。WSDM2023在2023年2月27日到3月3日在新加坡举行,公布的录用结果为,共收到投稿
- 基于智能手机的行人惯性追踪数据集模型与部署
程序员石磊
室内定位智能手机
论文总结这篇《Smartphone-basedPedestrianInertialTracking:Dataset,Model,andDeployment》论文介绍了一种基于智能手机惯性测量单元(IMU)的行人追踪和定位系统。主要内容和贡献如下:数据集和实验设计:作者开发了一个智能手机惯性测量数据集(SIMD),包含超过4500条步行轨迹,涵盖了约190小时的行走时间和700多公里的总行程。数据集
- 论文总结 IndoTrack: Device-Free Indoor Human Tracking with Commodity Wi-Fi
AnastasiaJ
WiFi定位论文总结
IndoTrack:Device-FreeIndoorHumanTrackingwithCommodityWi-FiACM2017应用背景:室内人员跟踪对于许多实际应用(例如安全监控,行为分析和老人护理)都是至关重要的。先前的解决方案通常需要由人类目标携带专用设备,这在诸如老人护理和陌生人闯入的情况下是不便甚至是不可行的,这就需要无设备室内人员跟踪。已有方案:ⅰ基于摄像头,需要密集部署并引发严重隐
- 基于CNN和双向gru的心跳分类系统
deephub
cnngru深度学习神经网络
CNNandBidirectionalGRU-BasedHeartbeatSoundClassificationArchitectureforElderlyPeople是发布在2023MDPIMathematics上的论文,提出了基于卷积神经网络和双向门控循环单元(CNN+BiGRU)注意力的心跳声分类,论文不仅显示了模型还构建了完整的系统。以前的研究论文总结了以前的研究数据集和预处理应用层显示了
- 显著性检测算法学习阶段论文总结(1)
SH-ZZB
图像处理算法值得参考的显著性算法
因为本人研究方向是显著性检测,也就看了不少的显著性方面的文献。这篇博客是我对之前所看论文中一些较为经典,具有较大参考价值的论文的一个集中整理,也算是对自己学习过程的一个总结。1.GlobalContrastbasedSalientRegionDetection,Ming-mingCheng(CVPR2011)程明明的这篇基于全局颜色对比的显著性检测的论文我在上篇博客中详细介绍过,文中主要阐述了两种
- ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOSITION 论文总结
yrhzmu
低照度图像恢复图像处理
目录一、论文主要内容二、RRDNet的工作流程三、损失函数1、Retinex重建损失2、纹理增强损失3、光照指导的噪声损失4、损失函数公式三、实验结果四、代码复现结果一、论文主要内容1、提出了RRDNet,不需要提前训练,相反,权重更新依赖于输入单张图像的内部优化,这样确保了在不同场景和多种光照条件下的泛化能力(generalizationcapability)。2、RRDNet有三个分支,可以预
- 闵帆老师《论文写作》学习心得
oh panda
笔记
上周已经把闵帆老师的《论文写作》这门课学习完了,以下对学习到的内容进行一些总结。文章目录一、论文的基本概念二、论文写作中慎用的单词与短语三、如何写出好的英文句子四、规范使用符号与数学公式五、论文题目六、摘要七、引言八、文献综述九、算法伪代码十、实验十一、结论十二、参考文献的注意事项十三、关于图十四、LaTeX表格十五、如何回复审稿意见十六、会议论文与期刊论文总结一、论文的基本概念1.论文是什么?论
- fastReID论文总结
江小皮不皮
人工智能计算机视觉深度学习fastreidmINP
fastReID论文总结fastReIDReID所面临的挑战提出的背景概念:所谓ReID就是从视频中找出感兴趣的物体(人脸、人体、车辆等)应用场景:存在的问题:当前的很多ReID任务可复用性差,无法快速落地使用解决方式:发布了FastReID,可复用和快速落地fastReID的亮点fastReID的成就训练策略learningratewarm-upBackboneFreezing测试排序方法QEK
- 三维目标检测----CT3D论文分享
twn29004
论文阅读3d深度学习transformer
代码链接paper链接论文总结本文提出了一种目前二阶段的目标检测算法不能很好的提取proposal中的特征。本文提出了一种基于通道层面的self-attention结构来提高网络对于proposal中点的特征的提取能力。下面简单介绍一下网络的处理流程:与传统的二阶段目标检测器一样,首先使用一个backbone提取点样场景的特征,然后使用RPN网络生成proposal。注意,这里生成的proposa
- 【网安AIGC专题10.11】论文1:生成式模型GPT\CodeX填充式模型CodeT5\INCODER+大模型自动程序修复(生成整个修复函数、修复代码填充、单行代码生产、生成的修复代码排序和过滤)
是Yu欸
科研笔记与实践#文本处理与摘要自然语言处理代码复审论文阅读安全大模型chatgptAIGC
论文1:AutomatedProgramRepairintheEraofLargePre-trainedLanguageModels写在最前面论文总结背景知识介绍语言模型双向语言模型单向语言模型自动程序修复(APR)技术发展论文概述模型选择方法生成整个修复函数修复代码填充单行代码生产生成的修复代码排序和过滤实验实验数据集实验结果对比写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><